
INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES

de - BU 0000 NORD CON

Betriebsanleitung

Inhaltsverzeichnis

1	Einführung7							
	1.1	Über NORD CON						
	1.2	Arbeiten mit NORD CON	7					
2	Obe	erflächen und Sichten	10					
	2.1	Aufbau der Oberfläche						
	2.2	Aufbau Hauptmenü						
		2.2.1 Kategorie "Datei"						
		2.2.2 Kategorie "Bearbeiten"						
		2.2.3 Kategorie "Projekt"						
		2.2.4 Kategorie "Gerät"						
		2.2.5 Kategorie "Ansicht"						
		2.2.7 Kategorie "Extras						
	2.3	Werkzeugleisten						
	2.0	2.3.1 Standard						
		2.3.2 Gerät						
		2.3.3 Kategorie "Start"						
	2.4	Ansicht "Projekt"	21					
		2.4.1 Aufbau des Kontextmenüs						
	2.5	Ansicht "Nachrichten"	23					
	2.6	Ansicht "Fernbedienen"	24					
	2.7	Fenster an- bzw. abdocken	25					
3	Kom	nmunikation	31					
•	3.1	USS						
	.	3.1.1 Allgemeine Einstellungen						
		3.1.2 Busscan						
	3.2	Ethernet						
		3.2.1 Allgemeine Einstellungen						
		3.2.2 Busscan	34					
4	Para	ametrierung						
	4.1	Parameter bearbeiten						
	4.2	Parameter Filter						
	4.3	Offline Parametrierung						
	4.4	Parameter Ansicht	39					
	4.5	Vergleichsreport	40					
	4.6	Parameter Upload vom Gerät	40					
	4.7	•						
5	Stau	ueruna	43					
3	5.1	übersicht Steuerung						
	5.2	Standard Steuerung						
	5.3	Detaillierte Steuerung						
	5.3	5.3.1 Übersicht						
		5.3.2 Steuern						
		5.3.3 Verwaltung von Soll- und Istwerten						
		5.3.4 Formatierung von Soll- bzw. Istwert						
		5.3.5 Zustandswort						
		5.3.6 Steuerwort	48					
6	Fern	nbedienen	50					
	6.1	Standard	50					
	6.2	NORDAC SK 200 E	51					
	6.3	NORDAC SK 700/500/300 E						
	6.4	NORDAC vector mc						
	6.5	NORDAC vector ct	56					
7	Oszi	:illoskop						
•	7.1	Übersicht						
	7.1	0001310111						

	7.2 7.3	Anzeige	
	7.4	Messungen	
	7.5	Drucken, Speichern und Laden von Messreihen	
8	Makr	ro-Editor	64
	8.1	Oberflächen und Ansichten	
		8.1.1 Variablenfenster	
		8.1.2 Eigenschaftenfenster	64
		8.1.3 Protokollfenster	67
	8.2	Bearbeiten von Makros	67
		8.2.1 Neues Makro anlegen	
		8.2.2 Makro Öffnen	
		8.2.3 Makro Speichern	
		8.2.4 Einfügen von Anweisungen	
		8.2.6 Ausschneiden von Anweisungen	
		8.2.7 Löschen von Anweisungen	
		8.2.8 Suchen und Ersetzen	
		8.2.9 Anweisung nach oben verschieben	
		8.2.10 Anweisung nach unten verschieben	
		8.2.11 Erstellen von neuen Anweisungen	
	8.3	Ablaufsteuerung	
		8.3.1 Ablauf starten	
		8.3.2 Ablauf abbrechen	
_			
9		Frame-Editor	
	9.1	Master (Auftrag)	
	9.2	Gerät (Antwort)	
10	PLC.		
	10.1	Allgemeines	
		10.1.1 Spezifikation der PLC	
		10.1.2 PLC Aufbau	77 77
		10.1.2.2 Prozessabbild	77
		10.1.2.3 Programm Task	78
		10.1.2.4 Sollwert Verarbeitung	78
		10.1.2.5 Datenverarbeitung über Akku	78
		10.1.3 Funktionsumfang	
		10.1.3.2 Elektronisches Getriebe mit Fliegender Säge	79 79
		10.1.3.3 Visualisierung	79
		10.1.3.4 Prozessregler	80
		10.1.3.5 CANopen Kommunikation	80
	10.2	Erstellen von PLC Programmen	
		10.2.1 Laden, Speichern & Drucken	
		10.2.2 Editor	
		10.2.2.1 Variablen und FB Deklaration 10.2.2.2 Eingabefenster	81 82
		10.2.2.3 Watch- & Breakpoint Anzeigefenster	83
		10.2.2.4 PLC Meldungsfenster	83
		10.2.3 Programm zum Gerät übertragen	83
		10.2.4 Debugging	
		10.2.4.1 Beobachtungspunkte (Watchpoints)	84
		10.2.4.2 Haltepunkte (Breakpoints) 10.2.4.3 Einzelschritt (Single Step)	84 84
		10.2.5 PLC Konfiguration	
	10.3	Funktionsblöcke	
		10.3.1 CANopen	
		10.3.1.1 Überblick	86
		10.3.1.2 FB_NMT	86
		10.3.1.3 FB_PDOConfig	87
		10.3.1.4 FB_PDOReceive 10.3.1.5 FB_PDOSend	89 91
		10.3.1.3 FB_FDOSerid 10.3.2 Elektronisches Getriebe mit Fliegender Säge	_

	10.3.2.1 Überblick	93
	10.3.2.2 FB_FlyingSaw	93
	10.3.2.3 FB_Gearing	95
	10.3.3 Motion Control	
	10.3.3.1 MC_Control	97
	10.3.3.2 MC_Control_MS	98
	10.3.3.3 MC_Home	90
	10.3.3.4 MC_MoveAbsolute	100
		100
	10.3.3.5 MC_MoveAdditive	_
	10.3.3.6 MC_MoveRelative	102
	10.3.3.7 MC_MoveVelocity	102
	10.3.3.8 MC_Power	104
	10.3.3.9 MC_ReadActualPos	105
	10.3.3.10 MC_ReadParameter	105
	10.3.3.11 MC_ReadStatus	106
	10.3.3.12 MC_Reset	107
	10.3.3.13 MC_Stop	108
	10.3.3.14 MC_WriteParameter_16 / MC_WriteParameter_32	108
	10.3.4 Standard	
	10.3.4.1 CTD Abwärtszähler	109
	10.3.4.2 CTU Aufwärtszähler	110
	10.3.4.3 CTUD Auf- und Abwärtszähler	111
	10.3.4.4 R_TRIG und F_TRIG	113
	10.3.4.5 RS Flip Flop	114
	10.3.4.6 SR Flip Flop	114
	10.3.4.7 TOF Ausschaltverzögerung	115
	10.3.4.8 TON Einschaltverzögerung	116
	10.3.4.9 TP Zeitimpuls	117
	10.3.5 Zugriff auf Speicherbereiche des Frequenzumrichters	.118
	10.3.5.1 FB_ReadTrace	118
	10.3.5.2 FB_WriteTrace	119
	10.3.6 Visualisierung ParameterBox	.120
	10.3.6.1 Überblick Visualisierung	121
	10.3.6.2 FB_DINTToPBOX	121
	10.3.6.3 FB_STRINGToPBOX	124
	10.3.7 FB_Capture (Erfassen schneller Ereignisse)	.126
	10.3.8 FB DinCounter	
	10.3.9 FB_FunctionCurve	.129
	10.3.10 FB_PIDT1	.130
	10.3.11 FB_ResetPostion	
	10.3.12 FB_Weigh	.133
10.4	Operatoren	134
	10.4.1 Arithmetische Operatoren	
	10.4.1.1 ABS	134
	10.4.1.2 ADD und ADD(135
	10.4.1.3 DIV und DIV(135
	10.4.1.4 LIMIT	136
	10.4.1.5 MAX	136
	10.4.1.6 MIN	137
	10.4.1.7 MOD und MOD(137
	10.4.1.8 MUL und MUL(137
	10.4.1.9 MUX	138
	10.4.1.10 SUB und SUB(138
	10.4.2 Erweiterte mathematische Operatoren	130
	10.4.2.1 COS, ACOS, SIN, ASIN, TAN, ATAN	139
	10.4.2.2 EXP	140
	10.4.2.3 LN	140
	10.4.2.4 LOG	141
	10.4.2.5 SQRT	141
	10.4.3 Bit Operatoren	
	10.4.3.1 AND und AND(142
	10.4.3.2 ANDN und ANDN(142
	10.4.3.3 NOT	143
	10.4.3.4 OR und OR(143
	10.4.3.5 ORN und OR(143
	10.4.3.6 ROL	144
	10.4.3.7 ROR	145
	10.4.3.8 S und R	140
	IV.4.J.O J UIU N	140

		10.4.3.9 SHL	146
		10.4.3.10 SHR	146
		10.4.3.11 XOR und XOR(147
		10.4.3.12 XORN und XORN(147
		10.4.4 Lade- und Speicheroperatoren	1481
		10.4.4.2 LDN	149
		10.4.4.3 ST	149
		10.4.4.4 STN	149
		10.4.5 Vergleichs Operatoren	149
		10.4.5.1 EQ	150
		10.4.5.2 GE	150
		10.4.5.3 GT 10.4.5.4 LE	150 151
		10.4.5.5 LT	151
		10.4.5.6 NE	152
	10.5	Prozesswerte	152
		10.5.1 Ein- und Ausgänge	
		10.5.2 PLC Soll- und Istwerte	
		10.5.3 Bus Soll- und Istwerte	
		10.5.4 ControlBox und ParameterBox	
		10.5.5 Infoparameter	
		10.5.7 PLC Parameter	
	10.6	Sprachen	
	10.0	10.6.1 Anweisungsliste (AWL / IL)	
		10.6.1.1 Allgemein	169
		10.6.2 Strukturierter Text (ST)	172
		10.6.2.1 Allgemein	172
		10.6.2.2 Anweisungen	173
	10.7	Sprünge	
		10.7.1 JMP	
		10.7.2 JMPC	
	10.8	Typkonvertierung	
	10.0	10.8.1 BOOL_TO_BYTE	
		10.8.2 BYTE_TO_BOOL	
		10.8.3 BYTE_TO_INT	
		10.8.4 DINT_TO_INT	
		10.8.5 INT_TO_BYTE	
	400	10.8.6 INT_TO_DINT	
	10.9	PLC Störmeldungen	180
11	Proje	ktmodus	182
	11.1	Allgemein	182
	11.2	HMI	183
	11.3	Sichern und Wiederherstellen	184
	11.4	Projektdownload	185
12	Eirmy	vare	107
12	12.1	So aktualisieren Sie die Firmware	
	12.2	Firmwareaktualisierungsprogramm	
	12.3	Firmwareaktualisierung über Systembus	
13	Einste	ellungen	196
	13.1	Oberfläche	196
	13.2	Geräteübersicht	197
	13.3	Steuern	198
	13.4	Projekt	199
	13.5	Verzeichnisse	
	13.6	Makro-Editor	201
	13.7	Parameter	202
	13.8	PLC	
14	Mald.	ungen	
14	MEIGI	ungen	∠∪ა

NORD CON – Betriebsanleitung

	14.1	Fehler und Hinweise	203	
15	Getri	ebebau Nord	209	
	15.1	Unternehmensgeschichte	210	
	15.2	Frequenzumrichter	212	
		15.2.1 SK 135E	212	
		15.2.2 SK 180E	213	
		15.2.3 SK 200E	213	
		15.2.4 SK 500E	215	

1 Einführung

1.1 Über NORD CON

NORD CON ist ein PC-Programm zum 4 "Parametrierung" und 5.1 "Übersicht Steuerung" von Frequenzumrichtern und Busbaugruppen der FirmaGetriebebau NORD.

Mit NORD CON können bis zu 31 Frequenzumrichter gleichzeitig über die integrierte RS485-Schnittstelle angesprochen werden. Die Kommunikation mit den Frequenzumrichtern erfolgt über die serielle Schnittstelle des PC's.

Für Testabläufe oder Inbetriebnahmen können die angeschlossenen Frequenzumrichter über den PC gesteuert werden. Der aktuelle Zustand des Frequenzumrichters kann währenddessen beobachtet werden. Mit Hilfe von 8 "Makro-Editor" können ganze Prozeßabläufe erstellt werden.

NORD CON ermöglicht die Erstellung, Dokumentation und Sicherung von Parametereinstellungen eines Frequenzumrichters. Dazu können alle Parametereinstellungen vom Frequenzumrichter ausgelesen, bzw. zum Frequenzumrichter übertragen werden. Es können Offline - d.h. ohne einen angeschlossenen Frequenzumrichter - Parameter-Datenbanken erstellt oder bearbeitet werden.

Weiterhin besteht die Möglichkeit die angeschlossenen Frequenzumrichter fernzusteuern. Bei der 6 "Fernbedienen" des Frequenzumrichters wird die entsprechende Bedieneinheit am PC simuliert. Somit können Geräte bedient werden, die entweder schwer zugängig sind, oder keine Bedieneinheit besitzen

1.2 Arbeiten mit NORD CON

1 Information

Serielle Schnittstelle

Für die Parametrierung und Steuerung der Geräte mit NORD CON benötigt Ihr PC eine serielle Schnittstelle.

1. Installation

Bitte starten Sie das Installationsprogramm von NORD CON auf der beiliegenden CD oder laden Sie das Installationsprogramm aus dem Internet. "http://www2.nord.com/cms/de/documentation/software/software-overview.jsp"

Geben Sie alle benötigten Informationen ein und installieren Sie NORD CON in das Standardverzeichnis.

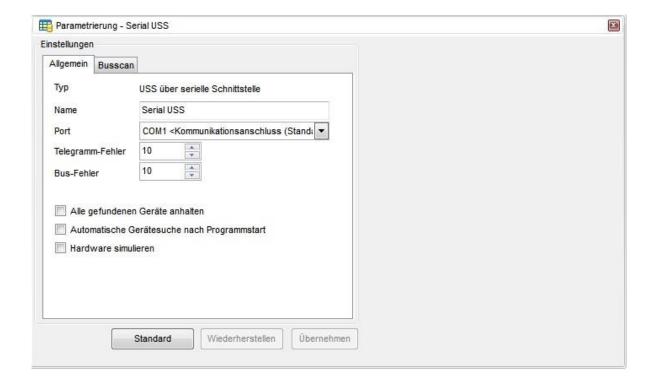
2. Verbinden

Besitzt der Frequenzumrichter eine RS232-Option, so kann er direkt an den PC angeschlossen werden. Hierzu wird lediglich ein serielles 1:1 Kabel benötigt. Bei dieser Möglichkeit kann nur ein Frequenzumrichter angeschlossen werden.

Jeder NORD Frequenzumrichter besitzt eine integrierte RS485-Schnittstelle, die an den Steuerklemmen verfügbar ist. Über diese Schnittstelle kann eine Master/Slave - Busverbindung mit 1 bis 31 Geräten aufgebaut werden. Zum Anschluss von NORD CON an diesen Bus ist ein RS232 - RS485 - Umsetzer notwendig.

i Information

USS Einstellungen

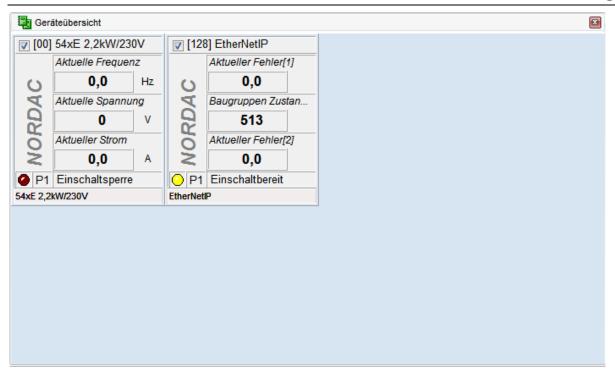

Beim Betrieb mit mehreren Geräten gleichzeitig ist darauf zu achten, dass alle angeschlossenen Geräte unterschiedliche USS-Adressen haben und bei allen Geräten die gleiche 3.1.2 "Busscan" eingestellt ist (s. auch Bedienungsanleitung des jeweiligen Frequenzumrichters).

3. Starten von NORD CON

Um NORD CON zu starten, verwenden Sie den Link "NORD CON starten" oder "Start->Programme->Nord->NORD CON 2.5->NORD CON.

4. Einstellen des Kommunikationsmoduls

Um die Kommunikationsparameter einzustellen, muss man in der Projektansicht das entsprechende Modul markieren. Über das Kontextmenü "Parametrieren" oder Menüeintrag "Gerät->Parametrieren" kann der Parameterdialog des Moduls geöffnet werden. Im Eingabefeld "Port" muss die richtige Portnummer eingetragen sein. Musste die Portnummer verändert werden, muss anschließend mit der Schaltfläche "Übernehmen" die Änderung bestätigt werden. Weiter Einstellungen sind für die erste Anwendung nicht notwendig und das Fenster kann wieder geschlossen werden.



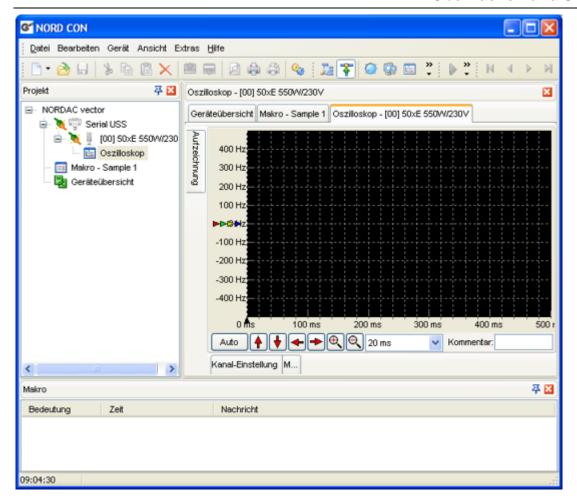
5. Busscan

Nach dem Ausführen eines Busscans werden alle angeschlossenen und betriebsbereiten Geräte gesucht. Alle gefundenen Geräte werden im Projektbaum und in der Geräteübersicht dargestellt. Anschließend wird das erste Gerät in der Liste markiert und der Benutzer kann alle gerätespezifischen Funktionen ausführen.

6. Arbeiten mit den Geräten

Der Benutzer kann jetzt durch das Anklicken des Gerätes in der Geräteübersicht oder im 2.4 "Ansicht "Projekt"" ein Gerät wählen. Über das Kontextmenü im Projektbaum, der 2.3 "Werkzeugleisten" oder dem Menüeintrag "Gerät" können dann Funktionen wie 5 "Steuerung" oder 4 "Parametrierung" aufgerufen werden.

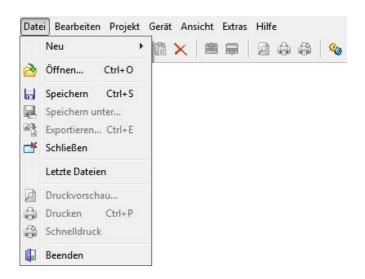
2 Oberflächen und Sichten


2.1 Aufbau der Oberfläche

Das Anwendungsfenster besteht aus Hauptmenü, Werkzeugleiste, Arbeitsbereich und den verschiedenen Ansichten. Im Arbeitsbereich werden die verschieden Editorfenster, wie Parameterfenster oder Makros dargestellt. Die Ansichten können frei positioniert oder an den Seiten des Arbeitsbereiches angedockt werden. Um die Position einer angedockten Ansicht zu verändern, muss man auf die Titelleiste der Ansicht klicken und die Maustaste gedrückt halten. Anschließend kann mit dem Mauszeiger die neue Position festgelegt werden. Ein farbiges Rechteck, zeigt dem Benutzer die aktuelle Position und Dockzustand. Nach dem Loslassen der linken Maustaste wird die eigentliche Aktion ausgeführt. Außerdem kann der Benutzer auch durch einen Doppelklick auf die Titelleiste, eine Ansicht an- bzw. abdocken. Das Layout wird beim Schließen der Anwendung gespeichert und beim Neustart wiederhergestellt.

Die Oberfläche ist in folgende Bereiche unterteilt:

- 2.2 "Aufbau Hauptmenü"
- 2.3 "Werkzeugleisten"
- Arbeitsbereich
- 2.4 "Ansicht "Projekt""
- 2.5 "Ansicht "Nachrichten""
- 2.6 "Ansicht "Fernbedienen""

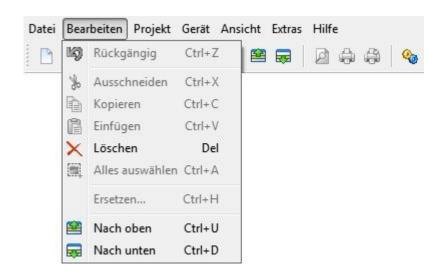


2.2 Aufbau Hauptmenü

Das Hauptmenü bildet die zentrale Stelle für alle Aktionen der Anwendung. Alle Editorfenster tragen ihre fensterspezifischen Aktionen dort ein. Die Aktionen sind nach Kategorien aufgeteilt.

2.2.1 Kategorie "Datei"

Name der	Tastenkombination	Bild	Beschreibung
Aktion	Tasterikombination	ыш	beschiebung
Neuer Parametersatz		#	Der Menüeintrag öffnet das Parameterfenster für ein neues Gerät. Zuvor muss der Benutzer in einem Dialog das gewünschte Gerät auswählen.
Neues Makro		E	Der Menüeintrag öffnet den Makroeditor mit einem leeren Dokument. Wurde der Makroeditor schon geöffnet, wird dem Benutzer angeboten das aktuelle Dokument zu speichern.
			Achtung: In der aktuellen Version kann immer nur 1 Makroeditor geöffnet werden!
Neues PLC Programm		6113 ••••••	Der Menüeintrag öffnet das PLC Editor mit einem leeren Dokument. Wurde das Fenster schon geöffnet, wir dem Benutzer angeboten das aktuelle Dokument zu speichern.
Öffnen	Strg + O		Der Menüeintrag öffnet den Dateiauswahldialog, um ein gespeichertes Dokument zu öffnen. Der Benutzer wählt über den Dateifilter den gewünschten Dokumenttyp aus, und kann anschließend die Datei auswählen. Es werden folgende Typen unterstützt:
			 Parameter Dateien (*.ndbx, *.db (V1.27)) Oszilloskop Dateien (*.scox, *.sco (V1.27)) Makro (*.ncmx, *.ncm (V1.27)) PLC Dateien (*.awlx, *.awl, *.nstx)
Speichern	Strg + S		Der Menüeintrag speichert das aktuelle Dokument. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Speichern unter			Der Menüeintrag speichert das aktuelle Dokument unter einen neuen Namen. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Exportieren	Strg + E		Der Menüeintrag exportiert die Daten des aktiven Editorfenster in eine Datei. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Letzten Dateien			Der Menüeintrag enthält ein Untermenü, in dem die zuletzt geöffneten Dokumente aufgelistet werden. Die Historie ist auf 5 Einträge begrenzt. Beim Anklicken eines der Einträge wird die Datei erneut geöffnet.
Drucken	Strg + P		Der Menüeintrag druckt den Inhalt des aktuellen Editorsfensters aus. Zuvor kann der Benutzer in einem Dialog die Druckoptionen festlegen.
			Hinweis: Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.
Druckvorschau		\$	Der Menüeintrag öffnet für den aktiven Editor eine Druckvorschau. Je nach Editor kann die Druckvorschau anders aufgebaut sein. Diese Aktion ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.


2 Oberflächen und Sichten

Name der Aktion	Tastenkombination	Bild	Beschreibung
Beenden			Der Menüeintrag schließt die Anwendung.

1 Information

Ein Menüeintrag ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.

2.2.2 Kategorie "Bearbeiten"

Name der Aktion	Tastenkombination	Bild	Beschreibung
Rückgängig	Strg + Z	Ŋ	Der Menüeintrag macht die letzte ausgeführte Aktion rückgängig. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Auschneiden	Strg + X	**	Der Menüeintrag scheidet das markierte Objekt aus und kopiert es in die Windows-Zwischenablage. Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt. Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden.
Kopieren	Strg + C		Der Menüeintrag kopiert das markierte Objekt in die Windows- Zwischenablage. Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt. Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden.
Einfügen	Strg + V		Der Menüeintrag kopiert den Inhalt der Windows- Zwischenablage an die markierte Position. Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt. Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden.
			Hinweis: Der Eintrag ist deaktiviert, wenn das aktuelle Steuerelement die Aktion nicht unterstützt oder der Inhalt der Windows-Zwischenablage nicht eingefügt werden kann.
Löschen	Strg + Del	×	Der Menüeintrag löscht das markierte Objekt. Die Aktion wird an das aktive Steuerelement weitergeleitet und dort

NORD CON - Betriebsanleitung

Name der Aktion	Tastenkombination	Bild	Beschreibung
			ausgeführt. Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden.
Alles Auswählen	Strg + A		Der Menüeintrag markiert alle Objekte des aktiven Steuerelements.
Ersetzen	Strg + H		Der Menüeintrag sucht den angegebenen Text und ersetzt diesen dann durch anderen Text. In einem Dialog können die entsprechenden Optionen eingestellt werden.
Nach oben	Strg + U	2	Der Menüeintrag verschiebt das markierte Objekt um eine Position nach oben.
Nach unten	Strg + D	₩	Der Menüeintrag verschiebt das markierte Objekt um eine Position nach unten.

1 Information

Ein Menüeintrag ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.

2.2.3 Kategorie "Projekt"

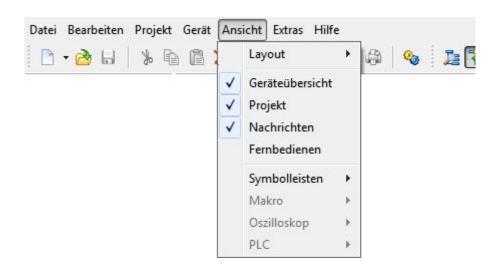

Name der Aktion	Tastenkombination	Bild	Beschreibung
Alles speichern in Datei			Die Aktion lädt die Parameter aller gefundenen Geräte und speichert diese in eine Datei.
Alles senden aus Datei			Die Aktion öffnet eine Datei und sendet die gespeicherten Parameter zu den Geräten.

1 Information

Ein Menüeintrag ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.

2.2.4 Kategorie "Gerät"

Name der Aktion	Tastenkombination	Bild	Beschreibung
Umbenennen			Mit Hilfe des Menüeintrags kann der Benutzer den Namen des markierten Gerätes verändern.
Verbinden	F2	*	Der Menüeintrag verbindet oder trennt die Verbindung zum markierten Gerät.
Kommunikationsart/seriell USS			Der Menüeintrag stellt das Kommunikationsmodul auf "seriell USS" ein. Bei einer Änderung der Kommunikationsart, wird die Geräteliste gelöscht!
Kommunikationsart/Ethernet			Der Menüeintrag stellt das Kommunikationsmodul auf "Ethernet" ein. Bei einer Änderung der Kommunikationsart, wird die Geräteliste gelöscht!
Parametertransfer vom Gerät	F3		Der Menüeintrag startet den Upload der Parameter vom Gerät zum PC.
Parametertransfer zum Gerät	F4		Der Menüeintrag startet einen Download der Parameter vom PC zum Gerät.
PLC Programm zum Gerät übertragen		5113 57 11	Der Menüeintrag überträgt ein gespeichertes PLC Programm zum ausgewählten Gerät.
Motorparameter importieren			Die Funktion ermöglicht einen Import von Motordaten aus einer externen Quelle. Hat der Benutzer im Dateiauswahldialog eine Motorparameterdatei (*.csv) ausgewählt, werden alle enthaltenen Motoren aufgelistet. Man wählt in der Liste einen Datensatz aus und bestätigt mit OK. Anschließend werden die Parameter zum ausgewählten Gerät übertragen. Ist das Parameterfenster geöffnet, werden die Werte in das Parameterfenster importiert und nicht zum Gerät übertragen. Das Übertragen der Parameter muss separat ausgeführt werden.
Firmware aktualisieren			Der Menüeintrag startet das Firmwareupload



Name der Aktion	Tastenkombination	Bild	Beschreibung
			Programm.
Steuern	F6		Der Menüeintrag öffnet das "Steuern" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Fernbedienen	F8		Der Menüeintrag öffnet das "Fernbedien" Fenster des markierten Gerätes im Fenster "Beobachten und Bedienen". Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Parametrieren	F7	=	Der Menüeintrag öffnet das "Parameter" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Oszilloskop		M	Der Menüeintrag öffnet das "Oszilloskop" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
PLC		6113 17	Der Menüeintrag öffnet das "PLC" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Busscan	Strg + F5	=	Der Menüeintrag führt ein Netzwerkscan für das ausgewählte Kommunikationsmodul aus. Achtung: Bei einem Netzwerkscan werden alle Geräte aus der
			Geräteliste entfernt und alle gerätespezifischen Fenster geschlossen!

1 Information

Ein Menüeintrag ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.

2.2.5 Kategorie "Ansicht"

2 Oberflächen und Sichten

Name der Aktion	Tastenkombination	Beschreibung
Layout -> Standard		Der Menüeintrag stellt das Standard - Layout der Anwendung für alle Ansichten wieder her. Die Position der Editorfenster bleibt aber unverändert.
Layout -> Standard alle Fenster		Der Menüeintrag stellt das Standard - Layout der Anwendung für alle Fenster einschließlich der Editorfenster wieder her.
Geräteübersicht		Der Menüeintrag schließt oder öffnet die Geräteübersicht.
2.4 "Ansicht "Projekt""		Der Menüeintrag schließt oder öffnet die Ansicht "Projekt".
2.5 "Ansicht "Nachrichten""		Der Menüeintrag schließt oder öffnet die Ansicht "Nachrichten".
2.6 "Ansicht "Fernbedienen""		Der Menüeintrag schließt oder öffnet die Ansicht "Fernbedienen".
Symbolleisten- >Standard		Der Menüeintrag schließt oder öffnet die Symbolleiste "Standard".
Symbolleisten- >Gerät		Der Menüeintrag schließt oder öffnet die Symbolleiste "Gerät".
Symbolleisten->Start		Der Menüeintrag schließt oder öffnet die Symbolleiste "Start".
Makro		Der Menüeintrag öffnet ein Untermenü. In diesem Menü sind alle speziellen Aktionen der Kategorie "Ansicht" des Makroeditors aufgelistet. Der Status sowie die Ausführung der Aktionen obliegen dem aktiven Makroeditor. Ist kein Fenster aktiv, sind alle Aktionen deaktiviert.
Oszilloskop		Der Menüeintrag öffnet ein Untermenü. In diesem Menü sind alle speziellen Aktionen der Kategorie "Ansicht" des Oszilloskops aufgelistet. Der Status sowie die Ausführung der Aktionen obliegen dem aktiven Oszilloskop. Ist kein Fenster aktiv, sind alle Aktionen deaktiviert.

1 Information

Ein Menüeintrag ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.

2.2.6 Kategorie "Extras"

Name der Aktion	Tastenkombination	Beschreibung
Kommunikations		Der Menüeintrag öffnet den Einstellungseditor für das ausgewählte
einstellungen		Kommunikationsmodul.

Name der Aktion	Tastenkombination	Beschreibung
Einstellungen		Der Menüeintrag öffnet ein Fenster zum Editieren der globalen
		Einstellungen des Programms.
USS Frame Editor		Der Menüeintrag öffnet den USS Frame-Editor.

2.2.7 Kategorie "Hilfe"

Name der Aktion	Tastenkombination	Beschreibung
Hilfe	F1	Der Menüeintrag öffnet die Onlinehilfe und wählt die Registerkarte "Inhalt" aus.
Index		Der Menüeintrag öffnet die Onlinehilfe und wählt die Registerkarte "Index" aus.
Über NORD CON		Der Menüeintrag öffnet einen Dialog mit den Programminformationen.

2.3 Werkzeugleisten

In den Werkzeugleisten sind für den schnellen Zugriff die gebräuchlichsten Aktionen untergebracht. Durch das Anklicken des entsprechenden Symbols in der Werkzeugleiste mit der Maus, wird die gewünschte Aktion aufgeführt.

Es gibt folgende Werkzeugleisten:

2.3.1 Standard

Name der Aktion	Bild	Beschreibung	
Neuer Parametersatz	#	Die Aktion öffnet das Parameterfenster für ein neues Gerät. Zuvor muss der Benutzer in einem Dialog das gewünschte Gerät auswählen.	
Neues Makro	EE	Die Aktion öffnet den Makroeditor mit einem leeren Dokument. Wurde der Makroeditor schon geöffnet, wir dem Benutzer angeboten das aktuelle Dokument zu speichern.	
		Achtung: In der aktuellen Version kann immer nur 1 Makroeditor geöffnet werden!	

2 Oberflächen und Sichten

Name der Aktion	Bild	Beschreibung			
Neues PLC Programm	5113 57 11	Die Aktion öffnet das PLC Editor mit einem leeren Dokument. Wurde das Fenster schon geöffnet, wir dem Benutzer angeboten das aktuelle Dokument zu speichern.			
Öffnen		Die Aktion öffnet den Dateiauswahldialog, um ein gespeichertes Dokument zu öffnen. Der Benutzer wählt über den Dateifilter den gewünschten Dokumenttyp aus, und kann anschließend die Datei auswählen. Es werden folgende Typen unterstützt: Parameterdaten V1.27 (*.db) Parameterdaten (*.ndbx) Oszilloskop-Datei V1.27 (*.sco) Oszilloskop-Datei V2.1 (*.scox) Makro (*.ncmx) Makro V1.27 (*.ncm) PLC Programm (*.awlx)			
Speichern		Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.			
Ausschneiden	*	Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt. Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn das aktuelle Fenster die Aktion nicht unterstützt.			
Kopieren		Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt. Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn das aktuelle Fenster die Aktion nicht unterstützt.			
Einfügen		Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn das aktuelle Steuerelement die Aktion nicht unterstützt.			
Löschen	×	Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn das aktuelle Fenster die Aktion nich unterstützt.			
Nach oben		Die Aktion verschiebt die markierte Zeile oder Gerät um eine Position nach oben. Diese Aktion ist deaktiviert, wenn das aktuelle Fenster die Aktion nicht unterstützt.			
Nach unten	₹-	Die Aktion wird an das aktive Steuerelement weitergeleitet und dort ausgeführt Je nach Steuerelement können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn das aktuelle Fenster die Aktion nicht unterstützt.			
Druckvorschau		Die Aktion verschiebt die markierte Zeile oder Gerät um eine Position nach oben. Diese Aktion ist deaktiviert, wenn das aktuelle Fenster die Aktion nicht unterstützt.			
Drucken		Die Aktion druckt den Inhalt des aktuellen Editorsfensters aus. Zuvor kann der Benutzer in einem Dialog die Druckoptionen festlegen. Hinweis: Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.			

Name der Aktion	Bild	Beschreibung
Schnelldruck		Der Menüeintrag druckt mit den aktuellen Druckereinstellungen den Inhalt des aktiven Editors aus.
		Hinweis: Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden. Diese Aktion ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.
Einstellungen	Q	Die Aktion "Einstellungen" öffnet ein Dialog mit den allgemeinen Einstellung von NORD CON

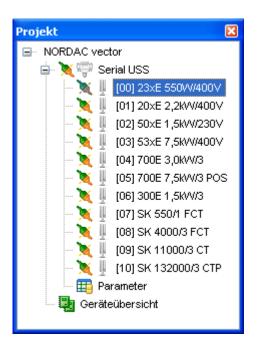
2.3.2 **Gerät**

Name der Aktion	Bild	Beschreibung	
Busscan	Z:	Die Aktion stößt einen neuen Busscan an.	
		Achtung: Bei einem Bus-Scan werden alle Geräte aus der Geräteliste entfernt und alle gerätespezifischen Fenster geschlossen!	
Verbinden	*	Die Aktion stellt eine Verbindung mit dem markierten Geräte her.	
Steuern	<u>()</u>	Die Aktion öffnet das "Steuern" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.	
Fernbedienen		Die Aktion öffnet das "Fernbedien" Fenster des markierten Gerätes im Fenster "Beobachten und Bedienen". Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.	
Parametrieren	=	Die Aktion öffnet das "Parameter" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.	
		Achtung: In der aktuellen Version kann immer nur 1 Parameterfenster geöffnet werden!	
Oszilloskop		Die Aktion öffnet das "Oszilloskop" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.	
PLC	5113 3 11	Die Aktion öffnet den PLC Editor für das ausgewählte Gerät. Ist diese Aktion deaktiviert, unterstützt das ausgewählte Gerät die PLC Funktionalität nicht.	
Parametertransfer von Gerät		Die Aktion startet eine Parameterupload vom Gerät zum PC.	
Parametertransfer zum Gerät		Die Aktion startet einen Parameter Download vom PC zum Gerät.	

2.3.3 Kategorie "Start"

Name der Aktion	Tastenkombination	Bild	Beschreibung
PLC Einstellungen		Q	Die Aktion öffnet das Konfigurationsfenster der PLC.
Übersetzen	Umsch + F7	區 工 10101	Die Aktion startet die Übersetzung eines PLC Programms.
Programmieren	Umsch + F8	₽ ■	Die Aktion lädt eine PLC Programm zum Gerät.

2 Oberflächen und Sichten


Name der Aktion	Tastenkombination	Bild	Beschreibung
Starten	F9	•	Die Aktion startet eine PLC Programm oder Makro. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Abbrechen	F11	0	Die Aktion beendet ein gestartes PLC Programm oder Makro. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Nächster Schritt	F12	•	Die Aktion führt den nächsten Befehl aus. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Debuggen	Umsch + F5	*	Die Aktion startet das PLC Programm im Debugmodus.

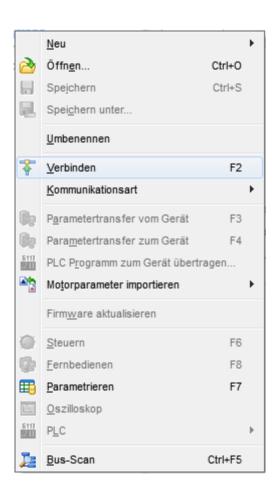
1 Information

Ein Menüeintrag ist deaktiviert, wenn kein Editorfenster geöffnet ist oder der Editor die Aktion nicht unterstützt.

2.4 Ansicht "Projekt"

In der Ansicht "Projekt" werden die aktuellen Geräte des Projektes in einer Baumstruktur angezeigt. Sie kann über den Hauptmenüpunkt "Ansicht->Projekt" geschlossen bzw. geöffnet werden. Im Projektbaum werden nach einem Busscan zunächst alle gefunden Geräte angezeigt. Mit Hilfe der Maus kann zwischen den einzelnen Geräten navigiert werden. Besitzt die Ansicht den Eingabefokus kann zusätzlich mit den Pfeiltasten "Hoch" und "Runter" ein Gerät ausgewählt werden. Befindet sich der Mauszeiger über einen Geräteeintrag, wird ein Hinweis über Gerätetyp und Bussadresse angezeigt. Nach der Auswahl eines Gerätes, kann der Benutzer über den Hauptmenüeintrag "Gerät", die Werkzeugleiste sowie das Kontextmenü alle Aktionen ausführen. Ist eine Aktion grau dargestellt, unterstützt das markierte Gerät diese nicht. Das 2.4.1 "Aufbau des Kontextmenüs" wird durch Klicken der rechten Maustaste in der Ansicht geöffnet.

Status der Geräte


Die Verbindung zum Gerät ist aufgebaut (Online)

Die Verbindung zum Gerät ist unterbrochen (Offline)

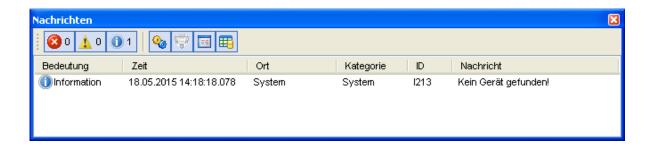
2.4.1 Aufbau des Kontextmenüs

Die Darstellung zeigt das Kontextmenü der Projekt-Ansicht. Das Menü bezieht sich immer auf dem markierten Knoten im Projektbaum.

Name der Aktion	Tastenkombination	Beschreibung
Neuer Parametersatz		Der Menüeintrag öffnet das Parameterfenster für ein neues Gerät. Zuvor muss der Benutzer in einem Dialog das gewünschte Gerät auswählen.
Neues Makro		Der Menüeintrag öffnet den Makroeditor mit einem leeren Dokument. Wurde der Makroeditor schon geöffnet, wird dem Benutzer angeboten das aktuelle Dokument zu speichern. Achtung: In der aktuellen Version kann immer nur 1 Makroeditor geöffnet werden!
Neues PLC Programm		Der Menüeintrag öffnet das PLC Editor mit einem leeren Dokument. Wurde das Fenster schon geöffnet, wir dem Benutzer angeboten das aktuelle Dokument zu speichern.

2 Oberflächen und Sichten

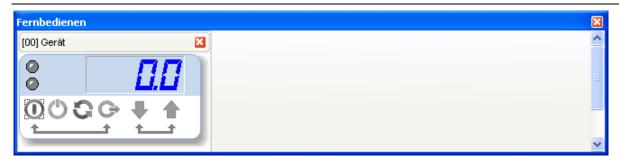
Name der Aktion	Tastenkombination	Beschreibung
Öffnen	STRG + O	Der Menüeintrag öffnet das PLC Editor mit einem leeren Dokument. Wurde das Fenster schon geöffnet, wir dem Benutzer angeboten das aktuelle Dokument zu speichern.
Speichern	STRG + S	Der Menüeintrag speichert das aktuelle Dokument. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Speichern unter		Der Menüeintrag speichert das aktuelle Dokument unter einen neuen Namen. Die Aktion wird an das aktive Editorfenster weitergeleitet und dort ausgeführt. Je nach Editortyp können dort unterschiedliche Operationen ausgeführt werden.
Umbenennen		Die Aktion öffnet ein Eingabefeld zur Änderung des Gerätenamens.
Verbinden	F2	Der Aktion verbindet oder trennt die Verbindung zum markierten Gerät.
Kommunikationsart/seri ell USS		Der Menüeintrag stellt das Kommunikationsmodul auf "seriell USS" ein. Bei einer Änderung der Kommunikationsart, wird die Geräteliste gelöscht!
Kommunikationsart/Ethe rnet		Der Menüeintrag stellt das Kommunikationsmodul auf "Ethernet" ein. Bei einer Änderung der Kommunikationsart, wird die Geräteliste gelöscht!
Parameter Upload von Gerät	F3	Die Aktion startet den Upload der Parameter vom Gerät zum PC.
Parameter Download zum Gerät	F4	Die Aktion startet den Download der Parameter vom PC zum Gerät.
Firmware aktualisieren		Die Aktion startet das Programm für den Upload der Firmware.
Steuern	F6	Die Aktion öffnet das "Steuern" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Fernbedienen	F8	Die Aktion öffnet das "Fernbedien" Fenster des markierten Gerätes im Fenster "Beobachten und Bedienen". Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Parametrieren	F7	Die Aktion öffnet das "Parameter" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Oszilloskop		Die Aktion öffnet das "Oszilloskop" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
PLC		Die Aktion öffnet das "PLC" Fenster des markierten Gerätes im Arbeitsbereich. Wurde das Fenster schon geöffnet, wird es in den Vordergrund gebracht.
Busscan	STRG + F5	Die Aktion stößt einen neuen Busscan an.
		Achtung: Bei einem Bus-Scan werden alle Geräte aus der Geräteliste entfernt und alle gerätespezifischen Fenster geschlossen!


2.5 Ansicht "Nachrichten"

Die Ansicht enthält eine Liste mit allen aufgetreten "NORD CON" Nachrichten. Die Einträge werden standardmäßig zeitlich aufsteigend angezeigt. Die Sortierung kann durch Anklicken eines Spaltenkopfes angepasst werden. Für die Filterung stehen folgende Filter zur Verfügung:

Filter	Bild	Beschreibung
Fehler	8	Ist dieser Filter aktiviert, werden alle Fehler angezeigt. Zusätzlich wird die Anzahl der Fehler in der Schaltfläche dargestellt.
Warnung	A	Ist dieser Filter aktiviert, werden alle Warnungen angezeigt. Zusätzlich wird die Anzahl der Warnungen in der Schaltflächen dargestellt.
Informationen	0	Ist dieser Filter aktiviert, werden alle Informationen angezeigt. Zusätzlich wird die Anzahl der Informationen in der Schaltflächen dargestellt.
System	%	Ist dieser Filter aktiviert, werden alle Nachrichten der Kategorie "System" angezeigt.
Kommunikation	A <u>P</u> I	Ist dieser Filter aktiviert, werden alle Nachrichten der Kategorie "Kommunikation" angezeigt.
PLC	6113 1711	Ist dieser Filter aktiviert, werden alle Nachrichten der Kategorie "PLC" angezeigt.
Makro		Ist dieser Filter aktiviert, werden alle Nachrichten der Kategorie "Makro" angezeigt
Parameter	=	Ist dieser Filter aktiviert, werden alle Nachrichten der Kategorie "Parameter" angezeigt

Die Nachrichten können über das Kontextmenü (rechte Maustaste) gespeichert und gelöscht werden. Diese Aktionen können auch über das Hauptmenü ("Extras/Nachrichten") ausgeführt werden.


Name der Aktion	Beschreibung
Löschen	Die Aktion löscht alle Nachrichten.
Speichern	Die Aktion speichert die Nachrichten in eine Datei.

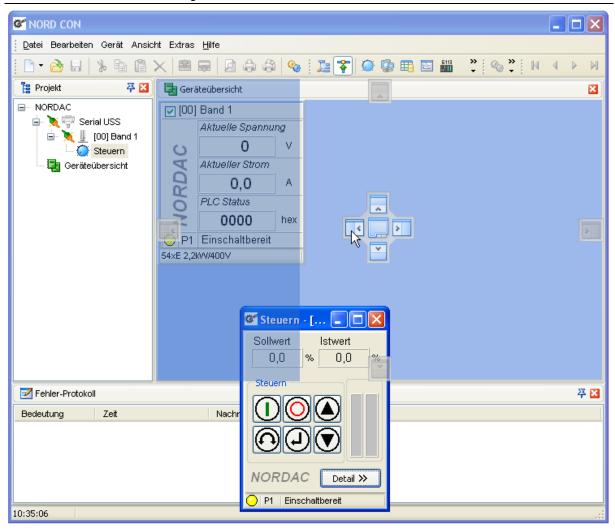
2.6 Ansicht "Fernbedienen"

In die Ansicht "Fernbedienen" ist ein Container für alle Fenster der Funktion 2.6 "Ansicht "Fernbedienen". Die Ansicht öffnet sich automatisch beim Öffnen des ersten Fensters und schließt sich nach dem Schließen des Letzten. Die Ansicht kann wie alle Ansichten an den Arbeitsbereich anbzw. abgedockt werden. Wurde die Ansicht vom Benutzer geschlossen, kann diese durch die Aktion "Fernbedienen" eines Gerätes wieder geöffnet werden. Die neuen Fenster werden immer an den linken Rand des letzten Fensters angedockt. Mit Hilfe der Maus kann der Benutzer diese wiederum ab- bzw. andocken. Wird die Ansicht das erste Mal über den Menüeintrag "Absicht->Fernbedienen" geöffnet, wird automatisch von jedem Gerät in der Liste das Fenster "Fernbedienen" geöffnet.

1 Information

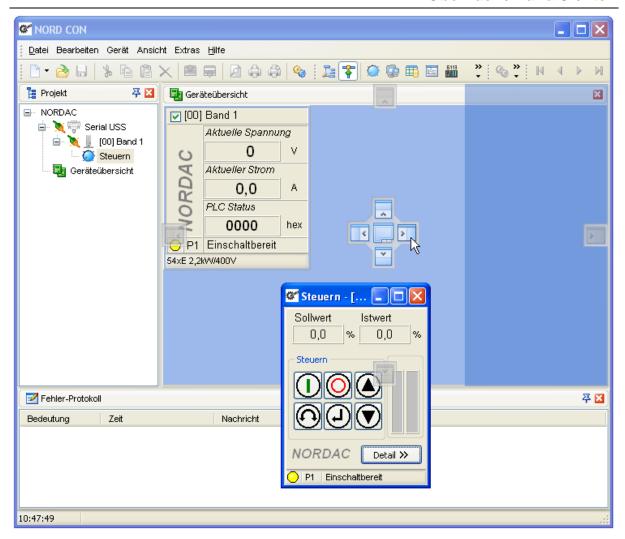
Fernbedienen

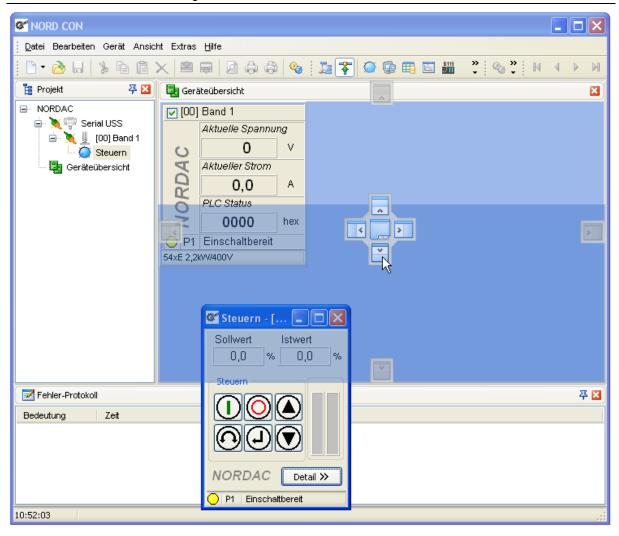
Die Fenster "Fernbedienen" können nur in die Ansicht "Fernbedienen" angedockt werden.


2.7 Fenster an- bzw. abdocken

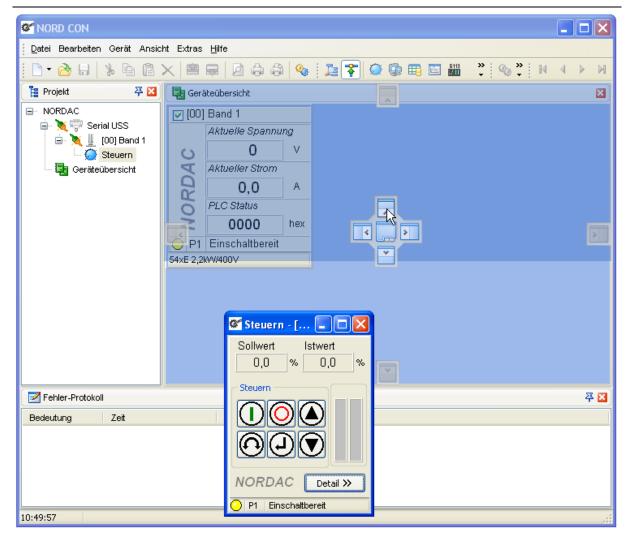
Mit dem neuen Design von NORD CON bekommt der Benutzer die Möglichkeit das Layout der Oberfläche an seine Vorstellungen anzupassen. Grundsätzlich kann man jede Ansicht und Editorfenster abdocken und frei auf den Bildschirm positionieren. Hierfür muss der Benutzer über der Titelleiste die linke Maustaste drücken und das farbige Rechteck an die gewünschte Position ziehen. Nach dem Ioslassen der Taste wird die Ansicht oder Editorfenster an diese Stelle als eigenständiges Fenster dargestellt. Bei den Editorfenstern hat man zusätzlich die Möglichkeit über das Kontextmenü, welches sich beim Klicken mit der rechten Maustaste auf die Titelleiste öffnet, das Fenster abzudocken. Das Andocken funktioniert analog zum Abdocken. Das farbige Rechteck zeigt jeweils die aktuelle Andockposition an. Da es aber nicht sinnvoll ist jedes Fenster an jede beliebige Stelle anzudocken sind bestimmte Regeln definiert

Fenstertyp	Andockregel
Ansicht des Hauptfensters (z.B. Projekt, Error-Protokoll, Bedienen und Beobachten)	Die Ansichten des Hauptfensters lassen sich nur an den linken, rechten bzw. unteren Rand des Arbeitsbereiches andocken. Innerhalb dieser Fenster gibt es keine Regel und der Benutzer kann die Position frei wählen.
Editorfenster (z.B. Makroeditor, Parameterfenster, Oszilloskop)	Die Editorfenster kann man nur in den Arbeitsbereich andocken. Die Ausrichtung ist aber auf unten bzw. oben oder als Registerkarte festgelegt.
Ansichten des Makrofenster	Die Ansichten des Makroeditors lassen sich nur an das Makroeditor andocken. Die Ausrichtung ist hier auf links, rechts oder unten festgelegt. Innerhalb der Ansichten sind keine Regeln definiert.
Ansichten des Oszilloskop	Die Ansichten des Makroeditors lassen sich nur an das Makroeditor andocken. Die Ausrichtung ist hier auf links, rechts oder unten festgelegt. Innerhalb der Ansichten sind keine Regeln definiert.
"Fernbedien" Fenster	Die "Fernbedien" Fenster lassen sich nur an das Fenster "Bedienen und Beobachten" andocken. Hierbei ist die Ausrichtung auf links festgelegt.

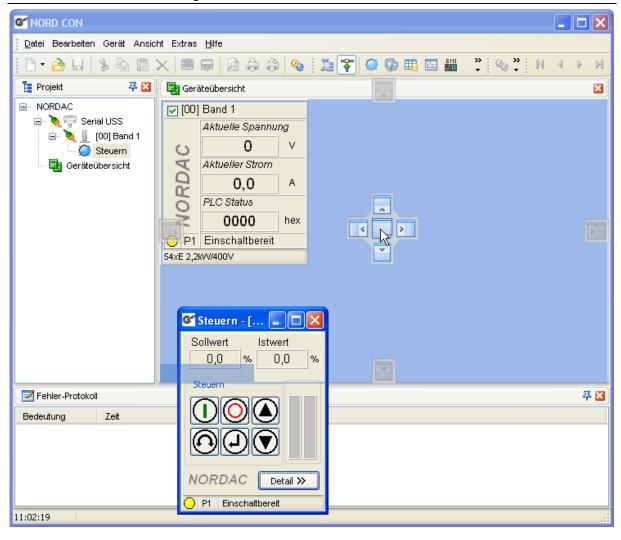

Dockposition, um das Fenster an den linken Rand anzudocken


Dockposition, um das Fenster an den rechten Rand anzudocken

Dockposition, um das Fenster an den unteren Rand anzudocken



Dockposition, um das Fenster an den oberen Rand anzudocken



Dockposition um das Fenster als Registerkarte anzudocken

3 Kommunikation

Um eine Verbindung zu einem Gerät aufzubauen, muss man im Projekt das entsprechende Kommunikationsmodul einfügen. Nach der Installation ist standardmäßig ein "USS" Modul konfiguriert. Über die Aktion "Parametrieren" können die Einstellungen des Moduls angepasst werden.

Aktuell werden folgende Kommunikationsmodule unterstützt:

3.1 USS

3.1.1 Allgemeine Einstellungen

Name

Im Eingabefeld kann der Benutzer einen Namen für das Kommunikationsmodul vergeben.

Port

In der Auswahlbox legt der Benutzer den COM-Ports des PCs fest, an dem der Frequenzumrichter angeschlossen ist.

Telegramm-Fehler

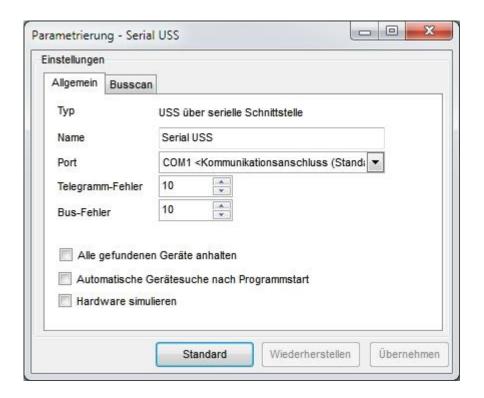
Im Eingabefeld legt der Benutzer die Anzahl der zulässigen Telegramm-Fehler fest. Telegramm-Fehler treten auf, wenn der Inhalt eines Telegramms nicht korrekt ist, d.h. wenn bei einem Parameterauftrag die Antwort nicht übereinstimmt. In der Regel wird jeder Auftrag nach 2 Telegrammen beantwortet. Die Anzahl der zulässigen Telegrammfehler gibt an, wie viele Versuche zugelassen werden, bevor eine Fehlermeldung erscheint.

Bus-Fehler

Im Eingabefeld legt der Benutzer die Anzahl der zulässigen Bus-Fehler fest. Ein Bus-Fehler tritt auf, wenn das Empfangs- oder Sendetelegramm fehlerhaft war. Die gestörten Telegramme werden verworfen. An dieser Stelle kann die Anzahl der zulässigen gestörten Telegramme, bei denen eine Fehlermeldung generiert wird, eingestellt werden. Bei gestörter Umgebung sollte die Fehlertoleranz demnach größer eingestellt werden.

Alle gefundenen Geräte anhalten

Ist diese Option aktiviert, sendet NORD CON nach der Gerätesuche an jedes gefundene Gerät das "Disable" Kommando. Das Gerät wird angehalten, wenn es über Bus gesteuert werden kann (P509).


Automatische Gerätesuche nach Programmstart

Mit der Option aktiviert oder deaktiviert man die automatische Suche nach dem Programmstart. Ist diese Option aktiviert, wird beim Start vom NORD CON automatisch ein Gerätesuche gestartet.

Hardware simulieren

Mit der Option aktiviert oder deaktiviert der Benutzer das Simulieren einer angeschlossen Hardware.

1 Information

Änderungen

Alle Änderungen werden erst bei drücken der Schaltfläche "Übernehmen" wirksam. Mit der Schaltfläche "Wiederherstellen" können die aktuell gültigen Einstellungen wiederhergestellt werden.

3.1.2 Busscan

Baudrate

In der Auswahlbox legt der Benutzer die Übertragungsgeschwindigkeit der seriellen Schnittstelle fest. Der Wert muss auch am Frequenzumrichter eingestellt sein. Beim Betrieb mit mehreren Frequenzumrichtern müssen alle Geräte den gleichen Wert haben. Die Baudraten über 115200 Bit/s sind benutzerspezifische Baudraten und werden nicht von allen Geräten unterstützt.

1 Information

Verbindungsprobleme

Ältere serielle PC Schnittstellen sind manchmal nicht in der Lage, die exakte benutzerspezifische Baudrate einzustellen. Aus diesem Grund kann keine Verbindung zum Gerät hergestellt werden.

Bus-Scan mit allen Baudraten durchführen

Mit der Option aktiviert oder deaktiviert der Benutzer den Bus-Scan mit verschiedenen Baudraten. Ist die Baudrate des Gerätes nicht bekannt, kann man mit einem Scan über alle Baudrate ein Gerät suchen.

Start-Baudrate

In der Auswahlbox legt man die Baudrate fest, mit der ein Bus-Scan gestartet werden soll.

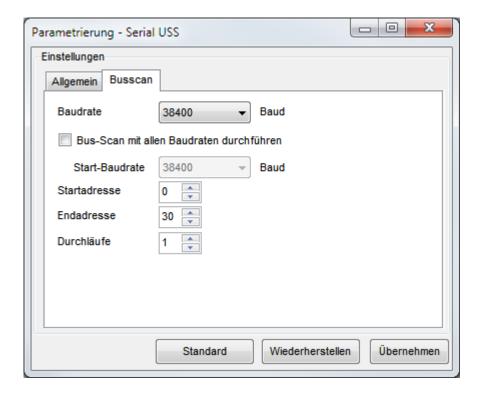
Startadresse

Im Eingabefeld legt man die USS-Adresse fest, ab der NORD CON nach angeschlossenen Frequenzumrichtern sucht. Mit Frequenzumrichtern, bei denen eine kleinere Adresse parametriert ist, wird keine Verbindung aufgebaut.

Endadresse

Im Eingabefeld legt man die USS-Adresse fest, bis der NORD CON nach angeschlossenen Frequenzumrichtern sucht. Mit Frequenzumrichtern, bei denen eine größere Adresse parametriert ist, wird keine Verbindung aufgebaut.

Busscan mit allen Baudraten durchführen


Mit der Option aktiviert oder deaktiviert der Benutzer den Bus-Scan mit verschiedenen Baudraten. Ist die Baudrate des Gerätes nicht bekannt, kann man mit einem Scan über alle Baudrate ein Gerät suchen.

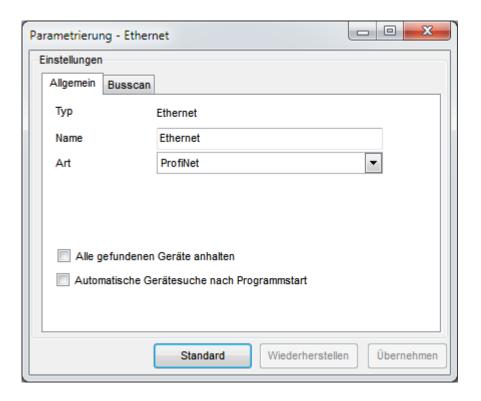
Alle gefundenen Geräte anhalten

Mit der Option aktiviert oder deaktiviert man das Anhalten (Wegnahme der Freigabe) für gefundene Geräte. Wenn diese Einstellung aktiviert ist, werden alle freigegebenen Frequenzumrichter, deren Schnittstelle auf Bus steht, beim Bus-Scan angehalten.

Automatische Gerätesuche nach Programmstart

Mit der Option aktiviert oder deaktiviert man die automatische Suche nach dem Programmstart. Ist diese Option aktiviert, wird beim Start vom NORD CON automatisch ein Bus-Scan gestartet.

f Information


Änderungen

Alle Änderungen werden erst bei drücken der Schaltfläche "Übernehmen" wirksam. Mit der Schaltfläche "Wiederherstellen" können die aktuell gültigen Einstellungen wiederhergestellt werden.

3.2 Ethernet

3.2.1 Allgemeine Einstellungen

Name

Im Eingabefeld kann der Benutzer einen Namen für das Kommunikationsmodul vergeben.

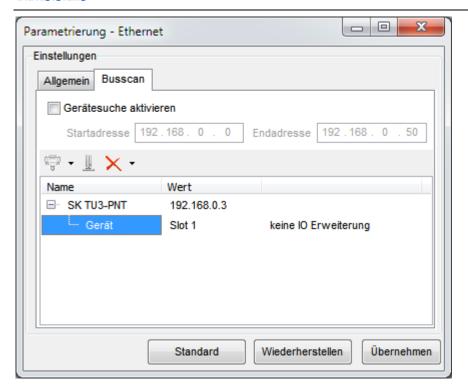
Art

In der Auswahlbox legt man die Art (ProfiNet, EthernetIP oder EtherCAT) der Kommunikation fest.

Alle gefundenen Geräte anhalten

Ist diese Option aktiviert, sendet NORD CON nach der Gerätesuche an jedes gefundene Gerät das "Disable" Kommando. Das Gerät wird angehalten, wenn es über Bus gesteuert werden kann (P509).

Automatische Gerätesuche nach Programmstart


Mit der Option aktiviert oder deaktiviert man die automatische Suche nach dem Programmstart. Ist diese Option aktiviert, wird beim Start vom NORD CON automatisch ein Gerätesuche gestartet.

i Information Änderungen

Alle Änderungen werden erst bei drücken der Schaltfläche "Übernehmen" wirksam. Mit der Schaltfläche "Wiederherstellen" können die aktuell gültigen Einstellungen wiederhergestellt werden.

3.2.2 Busscan

Gerätesuche aktivieren

Die Option legt fest, ob die Gerätesuche aktiviert ist. Wurde die Suche aktiviert, werden alle IP Adressen von der Startadresse bis zur Endadresse nach Geräten durchsucht. Ist die Suche deaktiviert, wird bei einem Busscan die nachfolgende Konfiguration verwendet.

Startadresse

In diesem Eingabefeld legt man die Anfangsadresse für die Gerätesuche fest.

Endadresse

In diesem Eingabefeld legt man die Endadresse für die Gerätesuche fest.

Busbaugruppe hinzufügen 📅

Die Schaltfläche fügt eine neue Busbaugruppe in die Geräteliste ein.

Gerät hinzufügen 😃

Die Schaltfläche fügt ein neues Gerät in die Geräteliste ein.

Löschen X

Die Schaltfläche entfernt den markierten Eintrag in der Geräteliste.

Wert - Busbaugruppe (IP Adresse):

In der Spalte muss man die IP Adresse der angeschlossenen Busbaugruppe eintragen.

Wert - Gerät:

In der Spalte muss man den Steckplatz des Gerätes eintragen (siehe nachfolgende Tabelle).

Steckplatz /	Steckplatz /	Steckplatz /	Steckplatz /	Steckplatz /	Steckplatz /	Steckplatz /	Steckplatz /
Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	Slot 7	Slot 8
Systembus- Adresse 32 oder SK 5xxE über TU3	Systembus- Adresse 34	Systembus- Adresse 36	Systembus- Adresse 38	Systembus- Adresse 40	Systembus- Adresse 42	Systembus- Adresse 44	Systembus- Adresse 46

Beispiel:

Zusätzlich - Gerät:

In der Spalte muss man die Konfiguration der IO Erweiterungen eintragen.

Busbaugruppe	Steckplatz / Slot 1	Steckplatz / Slot 2	Steckplatz / Slot 3	Steckplatz / Slot 4
SK TU3-EIP V1.2 SK TU3-PNT V1.2	SK 5xxE	nicht verfügbar	nicht verfügbar	nicht verfügbar
SK CU4-EIP V1.2 SK TU4-EIP V1.2 SK CU4-PNT V1.2	SK 5xxE SK 2xxE SK 19xE SK 1xxE			

1 Information

Zugriffsrechte

Bitte beachten Sie, dass Sie für die Parametrierung sowie Steuerung über die Busbaugruppe die entsprechenden Zugriffsrechte besitzen. Lesen Sie dazu die entsprechende Betriebsanleitung der eingesetzten Busbaugruppe.

i Information

Änderungen

Alle Änderungen werden erst bei drücken der Schaltfläche "Übernehmen" wirksam. Mit der Schaltfläche "Wiederherstellen" können die aktuell gültigen Einstellungen wiederhergestellt werden.

4 Parametrierung

Alle Parameter, die am Frequenzumrichter einstellbar sind, können mit NORD CON gelesen und verändert werden. Die gesamten Parameter können gespeichert werden und wieder zum Frequenzumrichter übertragen werden. Ausgelesene Parameter können zu Dokumentationszwecken ausgedruckt werden.

4.1 Parameter bearbeiten

Die Parameter eines Frequenzumrichters werden in Datenbanken verwaltet. Diese Datenbanken können abgespeichert, ausgedruckt oder nachbearbeitet werden. Alle Aktionen können über das Hauptmenü (Parametrierung) ausgeführt werden. Die wichtigsten Aktionen können auch über die Schaltflächen im Fenster ausgeführt werden.

1 Information

Menüeintrag "Parametrierung"

Der Menüeintrag "Parametrierung" wird nur angezeigt, wenn ein Parameterfenster markiert wurde.

Zum Bearbeiten von Parametern bietet NORD CON folgende Aktionen:

Aktion	Ort	Beschreibung
Neu	Datei -> Neu -> Datensatz	Die aktuelle Datenbank wird neu initialisiert, d.h die aktuellen und neuen Einstellungen werden gelöscht.
Öffnen	Datei -> Öffnen	Eine abgespeicherte Datenbank kann geöffnet werden.
Speichern	Datei -> Speichern	Die aktuelle Datenbank wird unter dem aktuellen Namen abgespeichert.
Speichern unter	Datei -> Speichern unter	Die aktuelle Datenbank wird unter einem neuen Namen abgespeichert.
Druckvorschau	Datei -> Druckvorschau	Die aktuellen Parametereinstellungen werden ausgedruckt.
Alle Parameter lesen oder Alles Lesen	Parametrieren -> Lesen -> Alle Parameter	Die gesamten Parameter des Frequenzumrichters werden ausgelesen und in die Datenbank eingetragen.
Aktuelle Menügruppe lesen	Parametrieren -> Lesen -> Aktuelle Menügruppe	Die Parameter der ausgewählten Menügruppe werden ausgelesen und in die Datenbank eingetragen.
Senden neue Einstellungen	Parametrieren -> Senden -> neue Einstellungen	Alle Parameter, bei denen ein neuer Wert in dem Feld 'Neue Einstellungen' eingetragen wurde, werden zum Frequenzumrichter übertragen. Es kann ausgewählt werden, ob dies für alle Parameter, oder nur für die aktuelle Menügruppe geschehen soll.
Senden Werkseinstellung	Parametrieren -> Senden -> Werkseinstellung	Es werden die Standardeinstellungen für alle Parameter bzw. für die Parameter der aktuellen

Aktion	Ort	Beschreibung
		Menügruppe übertragen.
Auswahl Freigeben	Parametrieren -> Freigeben	Alle Parameter (bzw. die aktuelle Menügruppe), werden freigegeben.
Auswahl nicht Freigeben	Parametrieren -> nicht Freigeben	Alle Parameter (bzw. die aktuelle Menügruppe), werden nicht freigegeben.
Standard	Schaltfläche "Standard"	Dem aktuell ausgewählten Parameter wird der Standardwert zugeordnet.
Senden	Schaltfläche "Senden"	Der Wert 'Neue Einstellung' vom aktuell ausgewählten Parameter wird übertragen.
Lesen	Schaltfläche "Lesen"	Der ausgewählte Parameter wird ausgelesen und der Wert in das Feld 'Aktuelle Einstellung' übertragen.

Mit der Option Auto-Lesen wird der ausgewählte Parameter automatisch ausgelesen.

4.2 Parameter Filter

Bei NORD CON besteht die Möglichkeit, einzelne Parameter auszublenden. Dies kann die Übersicht verbessern, oder dazu dienen, dass nur bestimmte Parameter ausgelesen oder übertragen werden.

1 Information

Wenn ein Filter aktiv ist, werden alle Aktionen nur mit den angezeigten Parametern ausgeführt.

Um einen Parameter auszublenden, muss zuerst die Freigabe entfernt werden. Dies geschieht über die Checkbox vor dem Parameter, oder über das Menü 4.1 "Parameter bearbeiten".

Im Feld Filter sind folgende Einstellungen möglich:

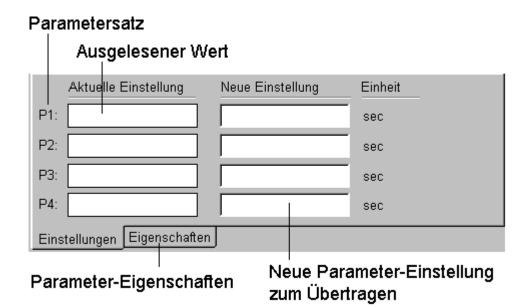
- Nur Auswahl Es werden nur die Parameter angezeigt, die freigegeben sind (Checkbox vor dem Parameter ist angeklickt)
- Kein Standard Es werden nur die Parameter angezeigt, deren Wert von der Standardeinstellung abweicht.
- Info-Parameter
 - Ja Informationsparameter werden angezeigt.
 - Nein Informationsparameter werden nicht angezeigt.
 - Nur Es werden ausschließlich Informationsparameter angezeigt.

4.3 Offline Parametrierung

Bei der Offline-Parametrierung wird eine Datenbank bearbeitet, die nicht einem aktuell angeschlossenen Frequenzumrichter zugeordnet ist.

Die Offline-Parametrierung wird über das Hauptfenster - Menü Datenbank - gestartet.

Menü Datenbank


- **Neu** Es kann eine neue Datenbank erstellt werden. Die neue Datanbank wird einem Frequenzumrichtertyp zugeordnet, der mittels einer Auswahlbox eingestellt wird.
- Offline Öffnen Eine abgespeicherte Datenbank kann geöffnet und bearbeitet werden.

4.4 Parameter Ansicht

Jeder Parameter besitzt einen Parameternamen und eine eigene Parameternummer, über die er erreicht werden kann. Die Parameter sind in Menügruppen unterteilt.

Jeder Parameter besitzt einen Parameterwert und Parametereigenschaften:

Bei dem ausgewählten Parameter werden, soweit vorhanden, alle Parametersätze angezeigt.

4.5 Vergleichsreport

Der Report stellt die Unterschiede bzw. Gemeinsamkeiten zweier Datensätze in einem Fenster da. Grundsätzlich können nur Datensätze einer Gerätefamilie verglichen werden. Die Parameter werden in Form einer Liste dargestellt. Unterschieden sich zwei Parameter voneinander, wird die Zeile mit einem grauen Balken markiert. Zusätzlich wird geprüft, ob sich ein Wert vom Standardwert unterscheidet. Ist das der Fall, wird der Wert rot dargestellt.

1 Information

Datensatz speichern

Nach dem Erzeugen des Reports kann der Datensatz nicht mehr gespeichert werden! Deshalb wird empfohlen den Datensatz zuvor zu speichern.

Online / Offline Vergleich

Für den Vergleich muss ein Gerät mit NORD CON verbunden werden. Im Anschluss muss das Parameterfenster für das Gerät geöffnet werden und es wird empfohlen alle Parameter auszulesen. Mit Hilfe der Filter kann die Auswahl der Parameter noch eingeschränkt werden. Über den Menüpunkt "Parametrierung -> Vergleich" kann man dann einen Report erzeugen. Nach dem Aufruf der Funktion muss der Benutzer einen gespeicherten Datensatz für den Vergleich auswählen. Sollen die ausgelesenen Parameter als Sicherung verwendet werden, muss der Benutzer anschließend den aktuellen Datensatz speichern. Daraufhin wird der Report erzeugt und angezeigt.

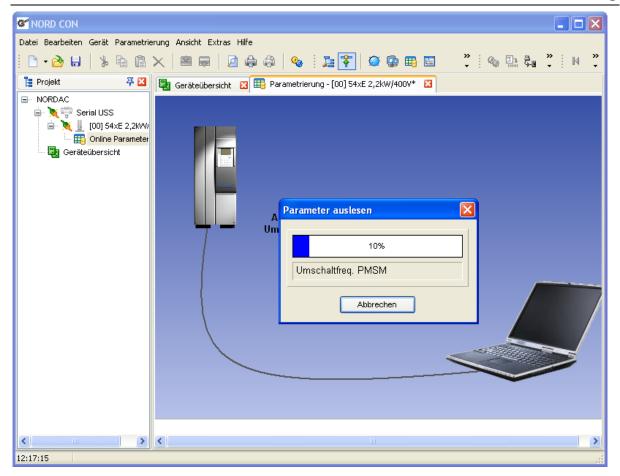
1 Information

Als Referenz für die Parameter und die Standardwerte wird die Konfiguration des Gerätes verwendet. Wird ein Datensatz ausgewählt der mit der Konfiguration des Gerätes nicht übereinstimmt, werden eventuell nicht vorhanden Parameter leer dargestellt und als Unterschied markiert.

Offline / Offline Vergleich

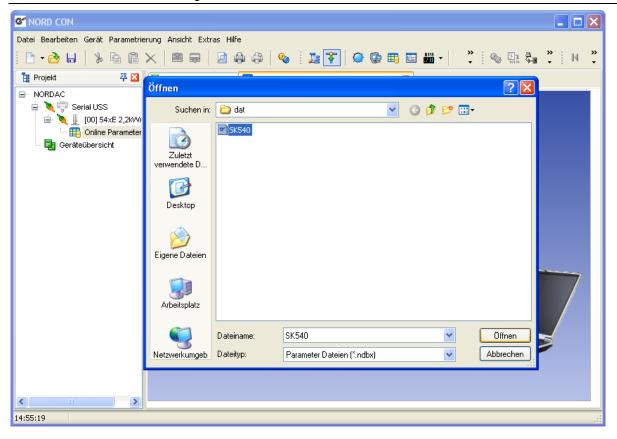
Für den Vergleich muss ein gespeicherter oder neuer Datensatz geöffnet werden. Mit Hilfe der Filter kann die Auswahl der Parameter noch eingeschränkt werden. Anschließend kann über den Menüpunkt "Parametrierung -> Vergleich" ein Report erzeugt werden. Nach dem Aufruf der Funktion muss der Benutzer einen gespeicherten Datensatz für den Vergleich auswählen. Daraufhin wird der Report erzeugt und angezeigt.

1 Information


Als Referenz für die Parameter und die Standardwerte wird die Konfiguration des Gerätes verwendet. Wird ein Datensatz ausgewählt der mit der Konfiguration des Gerätes nicht übereinstimmt, werden eventuell nicht vorhanden Parameter leer dargestellt und als Unterschied markiert.

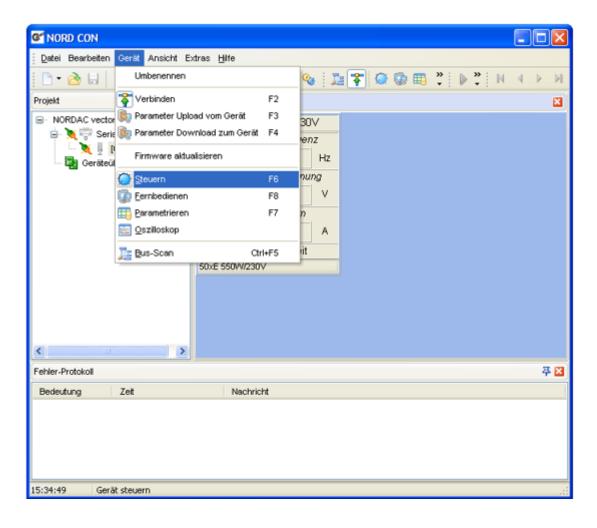
4.6 Parameter Upload vom Gerät

Die Funktion "Parameter Upload vom Gerät" lädt die Parameter eines Gerätes auf den PC und speichert die Werte anschließend in eine Parameterdatei. Die Aktion kann über die Toolbar "Gerät" oder über den Menüpunkt "Gerät/Parameter Upload vom Gerät" aufgerufen werden. Nach dem Ausführen der Funktion öffnet sich das nachfolgende Fenster und der Upload der Parameter beginnt automatisch. Treten während dem Transfer Kommunikationsfehler auf, werden diese im Nachrichtenfenster angezeigt. Am Ende des Transfers wird der Anwender aufgefordert eine Dateinamen für die Datei einzugeben. Bestätigt der Benutzer mit "Speichern" werden die Parameter gespeichert.



4.7 Parameter Download zum Gerät

Die Funktion "Parameter Download zum Gerät" öffnet eine Parameterdatei auf dem PC und sendet alle Werte zum Gerat. Die Aktion kann über die Toolbar "Gerät" oder über den Menüpunkt "Gerät/Parameter Download zum Gerät" aufgerufen werden. Nach dem Ausführen der Funktion öffnen sich das nachfolgende Fenster und ein Dateiauswahldialog. In diesem Dialog wählt der Anwender eine Parameterdatei aus und bestätigt mit "Öffnen". Anschließend wird geprüft, ob die Parameterdatei zum ausgewählten Gerät passt. Ist das der Fall, wird der Download gestartet.



5 Steuerung

5.1 Übersicht Steuerung

Mit NORD CON ist es möglich, NORD Frequenzumrichter zu steuern. Um diese Funktion nutzen zu können, muss das Gerät entsprechend parametriert werden. Da die Konfigurierung von Gerät zu Gerät abweichen kann, muss der Benutzer die Informationen aus der Bedienungsanleitung des Gerätes entnehmen. Bevor man ein Gerät steuern kann, muss der Benutzer eine Bus-Scan durchführen. Nach dem Scan werden alle angeschlossen Frequenzumrichter im Hauptfenster angezeigt. Anschließend kann der Benutzer das gewünschte Gerät durch Anklicken mit der linken Maustaste auswählen. Über den Hauptmenüpunkt "Gerät/Steuern" (F6) oder über das Popup-Menü (rechte Maustaste) kann man jetzt das Fenster "Steuern" öffnen.

Nach dem Öffnen wird mit den Standardeinstellung ("Einstellungen/Steuern/ Steuerungskonfiguration auswerten" ausgewählt) die Steuerungskonfiguration des Gerätes eingelesen und ausgewertet. Ist das "Steuern" eingeschränkt oder nicht möglich, wird dies durch ein Warnhinweis dem Benutzer angezeigt.

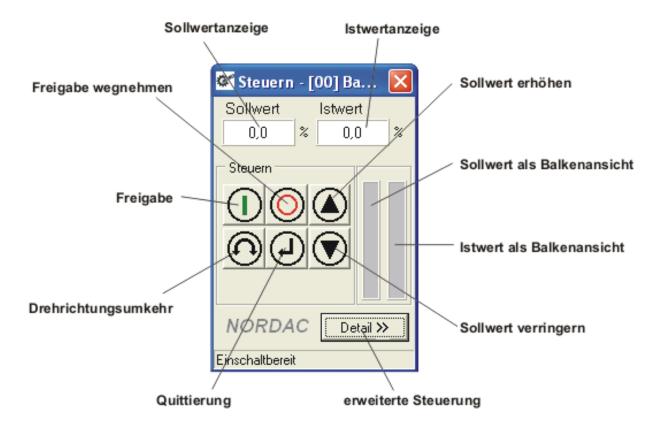
Im Fenster "Steuern" stehen dem Benutzer zwei Varianten zur Verfügung:

5.2 "Standard Der Frequenzumrichter kann freigegeben und der Sollwert erhöht bzw.

Steuerung" erniedrigt werden. Weiterhin ist eine Drehrichtungsumkehr und

Fehlerquittierung möglich.

5.3.1 "Übersicht" Mit diesem Fenster können sämtliche Steuerungsmöglichkeiten ausgenutzt


werden.

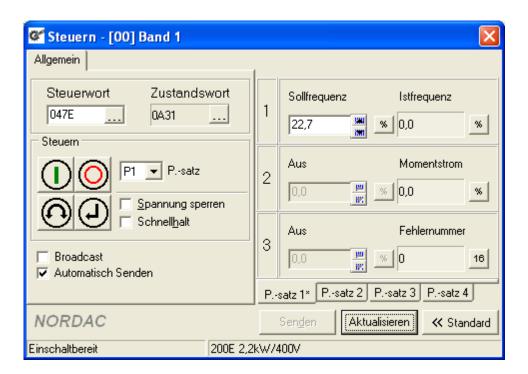
5.2 Standard Steuerung

Mit der Standard Steuerung stehen dem Benutzer folgende Funktionen zur Verfügung:

- Freigabe des Gerätes
- · Erhöhung oder Verringerung des Sollwerts
- Drehrichtungsumkehr
- Fehlerquittierung

Bevor diese Funktionen zur Verfügung stehen, muss das Gerät für das Steuern über Bus konfiguriert werden. Die entsprechenden Parameter und Werte sind aus der Bedienungsanleitung des jeweiligen Frequenzumrichters zu entnehmen.

In der "Standard" Ansicht wird nur der erste Soll- bzw. Istwert angezeigt. Die Formatierung der Werte ist für jede Konfiguration fest vorgegeben. Mit der Taste 'Detail' kann auf die erweiterte Steuerung umgeschaltet werden.

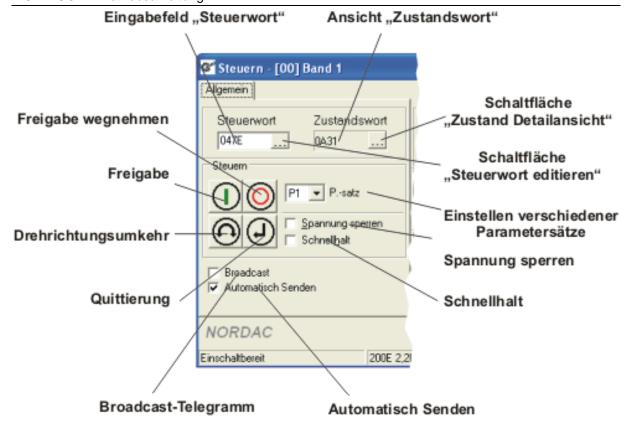

5.3 Detaillierte Steuerung

5.3.1 Übersicht

Im Modus "Detaillierte Steuerung" stehen dem Benutzer weitere Funktionen, wie

- 5.3.2 "Steuern"
- 5.3.3 "Verwaltung von Soll- und Istwerten"
- · Senden eines Broadcast-Telegramms
- Einstellen verschiedener Parametersätze
- · Automatisches Senden von Steuerwort und Sollwerten

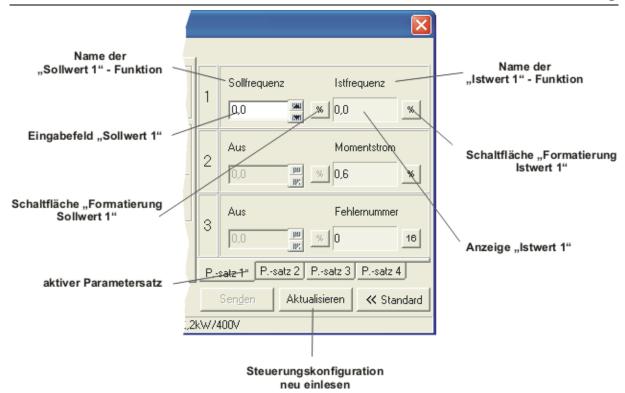
zur Verfügung.



5.3.2 Steuern

Das Steuerwort wird im Eingabefeld "Steuerwort" hexadezimal angezeigt. Durch Eingabe eines neuen Wertes (hexadezimal) kann der Benutzer das Steuerwort verändern. Für eine bitorientierte Eingabe des Steuerworts kann man über den Button "Steuerwort editieren" eine weiteres Editierfenster öffnen. In diesem Fenster wird das Steuerwort bitweise dargestellt.

Das Zustandswort wird in der Ansicht "Zustandswort" hexadezimal angezeigt. Für eine bitorientierte Ansicht des Zustandsworts kann der Benutzer über den Button "Zustand Detailansicht". Der Zustand wird ebenfalls als Klartext entsprechend der Frequenzumrichter-Zustandsmaschine in der Statuszeile angezeigt.


5.3.3 Verwaltung von Soll- und Istwerten

Zum Steuern des Gerätes kann der Benutzer bis zu 3 Soll- und Istwerte definieren (siehe Gerätebeschreibung). Die Soll- bzw. Istwerte werden entsprechend der Fehler! Verweisquelle konnte nicht gefunden werden. "Fehler! Verweisquelle konnte nicht gefunden werden." (Button "Formatierung Sollwert x") angezeigt. Die Eingabe der Sollwerte wird ebenfalls in diesem Format erwartet.

Zusätzlich kann man mit der Option "Einstellungen/Steuern/Parametersätze einzeln verwalten" die Soll- und Istwerte getrennt verwalten. Das bedeutet man kann für jeden Parametersatz die Sollwerte vorgeben. Beim aktivieren des Parametersatzes werden diese Werte an das Gerät gesendet. Dies ist notwendig, da für jeden Parametersatz unterschiedliche Soll- bzw. Istwerte definiert werden können. Der aktive Parametersatz wird mit einem Sternchen gekennzeichnet.

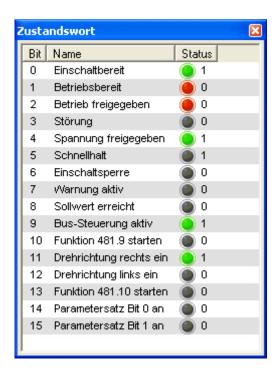
Ist die Option "Einstellungen/Steuern/Konfiguration automatisch einlesen" nicht aktiviert, kann der Benutzer durch Drücken des Buttons "Aktualisieren" die Konfiguration neu einlesen.

5.3.4 Formatierung von Soll- bzw. Istwert

Zeichen	Bezeichnung	Beschreibung
"%"	16 Bit normiert Wert	Diese Formatierung interpretiert den Soll- bzw. Istwert als 16 Bit normierten Wert. Normierung bedeutet eine Skalierung des Wertebereichs und liegt zwischen -200% und 199% eines Basiswertes (z.B. Nennfrequenz).
"16"	16 Bit unnormiert	In dieser Formatierung wird der Soll- oder Istwert als 16 Bit Wert interpretiert, der ohne Skalierung an das Gerät übertragen und angezeigt wird.
"B"	DigInBits	In dieser Formatierung wird der Soll- oder Istwert als ein 8 Bit Wert interpretiert. Der Zustand der Bits wird einzeln in Checkboxen angezeigt. Über diese Checkboxen können die einzelnen Bits des Sollwertes geändert werden.
"L"	32 Bit Low-Word	In dieser Formatierung wird der Soll- oder Istwert als das niederwertige Wort (16 Bit Wert) eines 32 Bit-Wert interpretiert. Ist ein weiterer Soll- bzw. Istwert mit der Formatierung "32 Bit High-Word" parametriert, werden die beiden Sollbzw. Istwerte in der obersten Anzeige zusammengefasst. Der Sollwert kann dann als 32 Bit Wert eingegeben werden.
"H"	32 Bit High-Word	In dieser Formatierung wird der Soll- ober Istwert als das höherwertige Wort (16 Bit Wert) eines 32 Bit-Wert interpretiert (siehe "32 Bit Low-Word").

5.3.5 Zustandswort

Im Fenster "Zustandswort" wird das aktuelle Zustandswort bitweise angezeigt. Die einzelnen Bits sind in Tabellenform mit Bitnummer, Name und Status aufgelistet. Entsprechend des Bitwertes und der Bedeutung wird zusätzlich eine farbige LED angezeigt.


Bedeutung der LEDs:

LED	Bedeutung
	Das Bit wurde gesetzt und/oder eine Freigabe wurde erteilt.
	Es liegt ein Fehler an oder eine Freigabe wurde nicht erteilt.
	Das Bit ist nicht gesetzt.

In der Standardeinstellung wird das Zustandswort zyklisch gelesen und die Änderungen im Fenster angezeigt. Soll das zyklische Lesen deaktiviert werden, muss die Option "Automatisch" im Popup-Menü (rechte Maustaste) deaktiviert werden.

Das Fenster wird standardmäßig angedockt links neben dem "Steuern" – Fenster angezeigt. Soll das Fenster frei auf dem Desktop platziert werden, muss man über das Popup Menü "Andockbar/nein" auswählen. Um Platz zu sparen, kann das Fenster auch als Registerkarte neben der Karte Registerkarte "Allgemein" eingefügt werden. Hierfür muss das Fenster (linke Maustaste gedrückt halten) über die Karte "Allgemein" gezogen werden. Nach dem Loslassen der Taste wird das Fenster als Registerkarte angezeigt. Mit einem Doppelklick der linken Maustaste auf die Registerkarte kann man zum Fenstermodus zurückkehren.

5.3.6 Steuerwort

Im Fenster "Steuerwort" wird das aktuelle Steuerwort bitweise angezeigt. Die einzelnen Bits sind in Tabellenform mit Bitnummer, Name und Status aufgelistet. Entsprechend des Bitwertes und der Bedeutung wird zusätzlich eine farbige LED angezeigt. Wenn das Gerät auf Steuern über USS konfiguriert ist, kann man über die Kontrollkästchen die Bits verändern. Jede Veränderung des Steuerworts wird sofort an das Gerät gesendet ("Automatisch Senden").

Bedeutung der LEDs:

LED	Bedeutung	
	Das Bit wurde gesetzt und/oder eine Freigabe wurde erteilt.	
	Es liegt ein Fehler an oder eine Freigabe wurde nicht erteilt.	
	Das Bit ist nicht gesetzt.	

In der Standardeinstellung wird das Zustandswort zyklisch gelesen und die Änderungen im Fenster angezeigt. Soll das zyklische Lesen deaktiviert werden, muss die Option "Automatisch" im Popup-Menü (rechte Maustaste) deaktiviert werden.

Das Fenster wird standardmäßig angedockt links neben dem "Steuern" – Fenster angezeigt. Soll das Fenster frei auf dem Desktop platziert werden, muss man über das Popup Menü "Andockbar/nein" auswählen. Um Platz zu sparen, kann das Fenster auch als Registerkarte neben der Karte Registerkarte "Allgemein" eingefügt werden. Hierfür muss das Fenster (linke Maustaste gedrückt halten) über die Karte "Allgemein" gezogen werden. Nach dem Loslassen der Taste wird das Fenster als Registerkarte angezeigt. Mit einem Doppelklick der linken Maustaste auf die Registerkarte kann man zum Fenstermodus zurückkehren.

6 Fernbedienen

NORD CON kann die Bedieneinheit des jeweiligen Frequenzumrichters simulieren. Hierzu überträgt der Frequenzumrichter seinen Displayinhalt an NORD CON. Die Tastenfunktionen werden am PC simuliert und zum Frequenzumrichter gesendet. Das Gerät lässt sich nur dann über das Fernbedien-Fenster steuern, wenn er nicht zuvor über die Steuerklemmen oder über eine serielle Schnittstelle freigegeben wurde (P509 = 0 und P510 = 0). Außerdem darf der Parameter "Funktion Potentiometerbox" (P549) hierfür nicht auf die Funktion {4} "Frequenzaddition" oder Funktion

{5} "Frequenzsubtraktion" eingestellt sein.


1 Information

Time-Out-Überwachung

NORD Frequenzumrichter können über die Tastatur gesteuert werden (Freigabe, Sollwert +/-, Drehrichtung, etc.). Dabei ist die Time-Out-Überwachung nicht aktiv, sodass bei Abbruch der Verbindung zwischen PC und Frequenzumrichter kein Steuern mehr möglich ist.

6.1 Standard

Das Standardfenster für die Funktion "Fernbedienen" wird für alle Geräte verwendet, wenn die Option 13.1 "Oberfläche" nicht aktiviert wurde.

Name der Aktion	Bild	Beschreibung
Freigabe	①	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Freigabe ausschalten	Ф	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Drehrichtung ändern	Ç	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert.

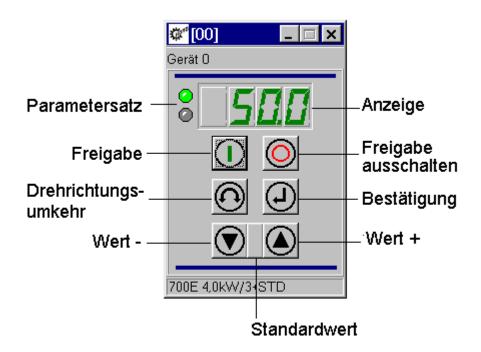
Name der Aktion	Bild	Beschreibung
		Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Erhöhen	•	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Verringern	•	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Bestätigen	Ġ	Die Taste betätigen, um einen geänderten Parameterwerte abzuspeichern oder um zwischen Parameternummer und Parameterwert zu wechseln. Hinweis: Soll ein geänderter Wert nicht abgespeichert werden, kann die -Taste zum Verlassen des Parameters genutzt werden, ohne die Änderung abzuspeichern.
Drehrichtung + Freigabe ausschalten		Durch gleichzeitiges Betätigen der STOP-Taste und "Richtungsumkehr-Taste " kann ein Schnellhalt ausgelöst werden.
Bestätigen + Freigabe		Durch gleichzeitiges Betätigen der EIN-Taste und "Bestätigen-Taste " kann bei einem freigegebenen Gerät in den Editiermodus gewechselt werden.

Es lassen sich alle Funktionen durchführen, die mit der Bedieneinheit (Control Box) des Frequenzumrichters möglich sind.

6.2 NORDAC SK 200 E

Das Fernsteuer-Fenster für die Frequenzumrichter der NORDAC SK 200 E - Reihen hat folgendes Aussehen:

Name der Aktion	Bild	Beschreibung
Freigabe	①	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Freigabe ausschalten	0	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Drehrichtung ändern	0	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Erhöhen	(A)	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Verringern	•	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Bestätigen	②	Die Taste betätigen, um einen geänderten Parameterwerte abzuspeichern oder um zwischen Parameternummer und Parameterwert zu wechseln. Hinweis: Soll ein geänderter Wert nicht abgespeichert werden, kann die -Taste zum Verlassen des Parameters genutzt werden, ohne die Änderung abzuspeichern.
Drehrichtung + Freigabe		Durch gleichzeitiges Betätigen der STOP-Taste und "Richtungsumkehr-Taste" kann ein Schnellhalt ausgelöst werden.



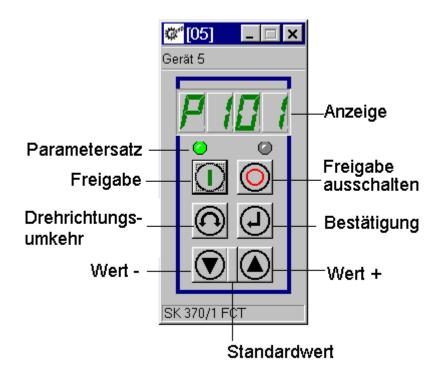
Name der Aktion	Bild	Beschreibung
ausschalten		
Bestätigen + Freigabe		Durch gleichzeitiges Betätigen der EIN-Taste und "Bestätigen-Taste " kann bei einem freigegebenen Gerät in den Editiermodus gewechselt werden.

Es lassen sich alle Funktionen durchführen, die mit der Bedieneinheit (Control Box) des Frequenzumrichters möglich sind.

6.3 NORDAC SK 700/500/300 E

Das Fernsteuer-Fenster für die Frequenzumrichter der NORDAC SK 700/500/300 E - Reihen hat folgendes Aussehen:

Name der Aktion	Bild	Beschreibung
Freigabe	Θ	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Freigabe ausschalten	0	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Drehrichtung ändern	0	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung:
		Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit

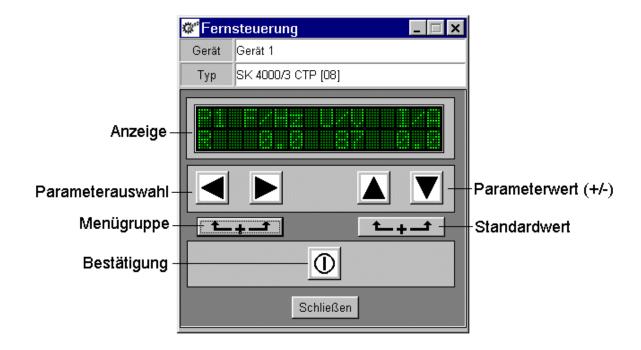

Name der Aktion	Bild	Beschreibung
		Parameter P540 möglich.
Erhöhen	(4)	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert.
		Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Verringern	•	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert.
		Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Bestätigen	0	Die Taste betätigen, um einen geänderten Parameterwerte abzuspeichern oder um zwischen Parameternummer und Parameterwert zu wechseln.
		Hinweis:
		Soll ein geänderter Wert nicht abgespeichert werden, kann die -Taste zum Verlassen des Parameters genutzt werden, ohne die Änderung abzuspeichern.
Drehrichtung + Freigabe ausschalten		Durch gleichzeitiges Betätigen der STOP-Taste und "Richtungsumkehr-Taste" kann ein Schnellhalt ausgelöst werden.
Bestätigen + Freigabe		Durch gleichzeitiges Betätigen der EIN-Taste und "Bestätigen-Taste " kann bei einem freigegebenen Gerät in den Editiermodus gewechselt werden.

Es lassen sich alle Funktionen durchführen, die mit der Bedieneinheit (Control Box) des Frequenzumrichters möglich sind.

6.4 NORDAC vector mc

Das Fernsteuer-Fenster für die Frequenzumrichter der NORDAC vector mc - Reihe hat folgendes Aussehen:

Name der Aktion	Bild	Beschreibung
Freigabe	①	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Freigabe ausschalten	0	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Drehrichtung ändern	0	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Erhöhen	(A)	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Verringern	•	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Bestätigen	②	Die Taste betätigen, um einen geänderten Parameterwerte abzuspeichern oder um zwischen Parameternummer und Parameterwert zu wechseln.



Name der Aktion	Bild	Beschreibung
		Hinweis: Soll ein geänderter Wert nicht abgespeichert werden, kann die -Taste zum Verlassen des Parameters genutzt werden, ohne die Änderung abzuspeichern.
Drehrichtung + Freigabe ausschalten		Durch gleichzeitiges Betätigen der STOP-Taste und "Richtungsumkehr-Taste " kann ein Schnellhalt ausgelöst werden.
Bestätigen + Freigabe		Durch gleichzeitiges Betätigen der EIN-Taste und "Bestätigen-Taste " kann bei einem freigegebenen Gerät in den Editiermodus gewechselt werden.

Es lassen sich alle Funktionen durchführen, die mit der Bedieneinheit (Control Box) des Frequenzumrichters möglich sind.

6.5 NORDAC vector ct

Das Fernsteuer-Fenster für die Frequenzumrichter der NORDAC vector ct - Reihe hat folgendes Aussehen:

Name der Aktion	Bild	Beschreibung
Freigabe	0	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Freigabe ausschalten	0	Zum Einschalten des Frequenzumrichters. Er ist jetzt mit der ggf. eingestellten Tippfrequenz (P113) freigegeben. Eine evtl. voreingestellte Minimalfrequenz (P104) wird jedoch mindestens geliefert. Parameter >Schnittstelle< P509 und P510 müssen = 0 sein.
Drehrichtung ändern	①	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert.

Name der Aktion	Bild	Beschreibung
		Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Erhöhen	(A)	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Verringern	•	Die Drehrichtung des Motors wechselt nach Betätigung dieser Taste. "Drehrichtung links" wird durch ein Minuszeichen signalisiert. Achtung: Vorsicht bei Pumpen, Förderschnecken, Lüftern, usw. Sperren der Taste ist mit Parameter P540 möglich.
Bestätigen	①	Die Taste betätigen, um einen geänderten Parameterwerte abzuspeichern oder um zwischen Parameternummer und Parameterwert zu wechseln. Hinweis: Soll ein geänderter Wert nicht abgespeichert werden, kann die -Taste zum Verlassen des Parameters genutzt werden, ohne die Änderung abzuspeichern.
Drehrichtung + Freigabe ausschalten		Durch gleichzeitiges Betätigen der STOP-Taste und "Richtungsumkehr-Taste " kann ein Schnellhalt ausgelöst werden.
Bestätigen + Freigabe		Durch gleichzeitiges Betätigen der EIN-Taste und "Bestätigen-Taste " kann bei einem freigegebenen Gerät in den Editiermodus gewechselt werden.

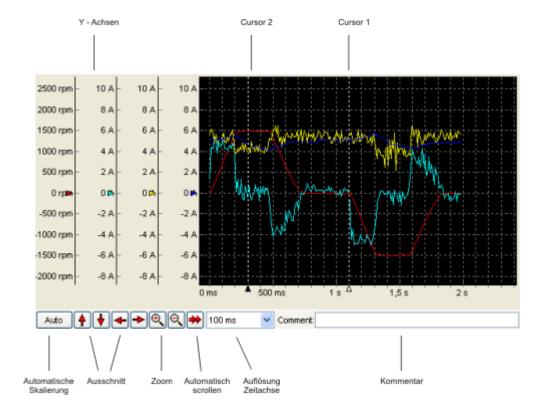
Es lassen sich alle Funktionen durchführen, die mit der Bedieneinheit (Control Box) des Frequenzumrichters möglich sind.

7 Oszilloskop

7.1 Übersicht

In NORD CON ist ein Oszilloskop integriert, mit dem es möglich ist, interne Prozessgrößen vom NORD Frequenzumrichter Frequenzumrichter graphisch darzustellen.

1 Information


Diese Option ist nicht bei den Gerätereihen NORDAC vector ct und NORDAC vector mc möglich!

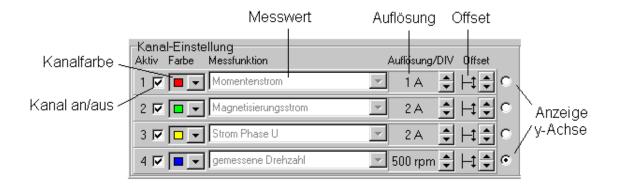
Die Oszilloskop-Funktion besitzt folgende Eigenschaften:

- · Aufzeichnung von bis zu 4 Kanälen
- Umfangreiche Triggermöglichkeiten
- · Skalierung der einzelnen Messreihen
- · Bestimmung von Mittelwerten, Effektivwerten, etc.
- Speichern, drucken und exportieren von Messreihen

7.2 Anzeige

Bei der Oszilloskopfunktion können bis zu 4 Kanäle gemessen und angezeigt werden.

Folgende Einstellungen können vorgenommen werden:

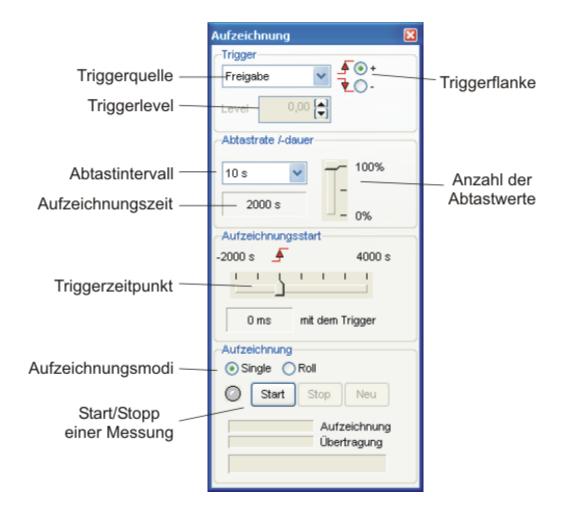


Name	Beschreibung
Auto	Automatische Skalierung aller dargestellten Messreihen
Offset	Auswahl des Darstellungsauschnittes (Verschieben aller Messreihen in x- bzw. y-Richtung)
Zoom	Grösse der Darstellung (Zoom aller Messreihen) Hinweis: Wenn der Mauszeiger sich über der Anzeige befindet, kann durch Betätigen der rechten Maustaste zwischen den Modi 'Move' und 'Messen' umgeschaltet werden. Im Modus 'Move' kann der darzustellende Ausschnitt mit Hilfe des Mauszeigers ausgewählt werden. Hierzu muss der Mauszeiger über die Anzeige bewegt werden und die linke Maustaste dauernd betätigt werden.
Automatisch Scrollen	Wurde diese Option aktiviert, wird während einer Aufzeichnung die Zeitachse automatisch zum letzten Punkt verschoben.
Auflösung Zeitachse	In diesem Kombinationsfeld kann der Benutzer die Skalierung der Zeitachse verändern.
Kommentar	Zusätzliche Informationsfeld, in dem weitere Informationen zur Messreihe abgespeichert werden können (max. 255 Zeichen).
Cursor	Durchführen von Messungen

7.3 Bedienung

Um eine Messung durchzuführen, sind folgende Schritte notwendig:

1. Auswahl der Kanäle


Für die Auswahl der 4 Messwerte steht jeweils ein Kombinationsfeld zur Verfügung. Jedem Kanal kann eine Farbe zugeordnet werden. Über die Checkboxen ist jeder Kanal einzeln an- bzw. ausschaltbar. Für jeden Kanal kann die Auflösung und ein Offset eingestellt werden. Bei der Darstellung der Messwerte wird die y-Achse von einem Kanal angezeigt. Dieser Kanal kann ebenfalls hier ausgewählt werden.

Bedeutung der Messfunktion

Messfunktion	Beschreibung
(=P[Nummer]) [Name]	Der Wert dieser Messfunktion wird im einem Zeitraster von ca. 100 ms aktualisiert und entspricht dem Wert des angegeben Parameters.
[Name]	Der Wert dieser Messfunktion wird in einem Zeitraster von ca. 100 ms aktualisiert.
(≈P[Nummer]) [Name]	Der Wert dieser Messfunktion wird in einem Zeitraster von ca. 50 ms aktualisiert.
(~P[Nummer]) [Name]	Der Wert dieser Messfunktion wird in einem Zeitraster von ca. 250 µs aktualisiert.

2. Einstellung Trigger

Über den Triggereinstellungen wird der Startpunkt einer Messung bestimmt. Zuerst muss die Triggerquelle festgelegt werden. Triggerquellen können zum einen die Messwerte sein, zum anderen Digitaleingänge, Umrichterzustände usw. Mit dem Triggerlevel bzw. der Triggerflanke wird der Startzeitpunkt der Messung festgelegt.

1 Information

Triggerlevel

Das Triggerlevel unterliegt je nach Triggerquelle unterschiedlicher Rasterung. Deshalb kann nicht jeder eingetragene Wert eingestellt werden. Nach dem Starten einer Aufzeichnung wird der nächstmögliche Wert errechnet und eingetragen.

Mit der Abtastrate wird die Zeit zwischen zwei Messwerten eingestellt. Zusammen mit der Anzahl der Abtastwerte ergibt sich daraus der Abtastzeitraum.

Über den Triggerzeitpunkt kann der Beginn der Aufzeichnung der Messwerte bezüglich des Triggerereignisses einstellt werden.

1 Information

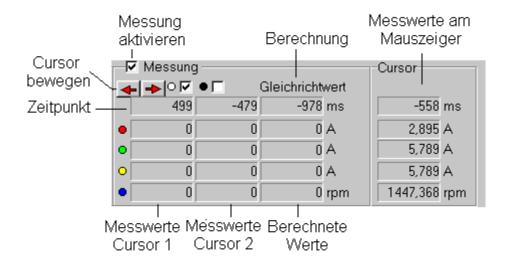
Abtastintervall

Die günstigste Einstellung für das Abtastintervall hängt von der Dynamik der Messwerte ab: Bei schnell veränderlichen Messwerten muss eine entsprechend kleine Abtastrate eingestellt werden. Die Anzahl der Abtastwerte beeinflusst die Übertragungsdauer der Messwerte zwischen Frequenzumrichter und NORD CON.

3. Auswahl des Aufzeichnungsmodus

Das Oszilloskop verfügt über 2 verschieden Modi. Der Benutzer kann über die Optionsfelder "Single" and "Roll" zwischen den beiden Modi wechseln. Standardmäßig ist der Modus "Single" eingestellt. In diesem Modus kann der Benutzer eine Aufzeichnung mit der eingestellten Triggerbedingungen starten. Die Aufzeichnungsdauer ist vom Oszilloskopspeicher des Gerätes abhängig und beträgt max. 2000s. Die Werte werden im eingestellten Abtastintervall aufgezeichnet.

Der "Roll" Modus ermöglicht dem Benutzer eine Aufzeichnung über einen größeren Zeitraum. Die aufgezeichneten Werte werden sofort zum PC übertragen. Dadurch kann der Benutzer keine Abtastrate festlegen. Sie ist abhängig von der Geschwindigkeit der Übertragung.


4. Starten einer Messung

Über den Start-Button wird eine Messung aktiviert. Es wird überwacht, ob das Triggerereignis eintritt. Wenn es eintritt, wird die Aufzeichnung innerhalb des Frequenzumrichters begonnen. Gleichzeitig wird begonnen, Messwerte zu NORD CON zu übertragen. Mit Stopp kann dieser Vorgang unterbrochen werden. Nachdem alle Messwerte übertragen wurden kann entweder mit Start eine neue Messung mit den gleichen Einstellungen gestartet werden, oder es können durch Betätigung des Neu-Buttons neue Einstellungen vorgenommen werden.

7.4 Messungen

Nachdem eine Messreihe vollständig aufgenommen wurde, können mit Hilfe von Cursorn Messungen an den Messreihen durchgeführt werden.

Für die Messungen stehen zwei Cursor zur Verfügung. Die Cursor können über bewegt werden. Die Auswahl des Cursors findet dabei über statt. Wenn der Mauszeiger sich über der Anzeige befindet, kann durch Betätigen der rechten Maustaste zwischen den Modi 'Move' und 'Messen' umgeschaltet werden. Im Modus 'Messen' können die Cursor durch Betätigen der linken Maustaste gesetzt werden.

Die Werte der gemessenen Kurven an Cursor 1 und Cursor 2 werden angezeigt. Zusätzlich werden mit den gemessenen Werten Berechnungen, wie z.B. Mittelwert, zwischen den Cursor-Positionen durchgeführt. Die Umschaltung der Berechnung erfolgt über klicken auf die Berechnungsanzeige.

Weiterhin werden die Messwerte an der Position des Mauszeigers angezeigt.

7.5 Drucken, Speichern und Laden von Messreihen

Die aufgenommen Messreihen können abgespeichert, exportiert oder ausgedruckt werden.

Menü Datei

- Öffnen Eine abgespeicherte Messreihe bzw. Einstellung kann ausgewählt und geöffnet werden. Beim Öffnen erscheint die Abfrage, ob nur die gespeicherten Einstellungen geladen werden sollen, oder zusätzlich die gespeicherten Messreihen geöffnet werden sollen.
- **Speichern unter** Die aktuellen Messreihen und Einstellungen werden unter einem neuen Namen abgespeichert
- Exportieren Die Messreihen werden als Graphikdatei oder Tabelle exportiert
- Drucken Die Messreihe mit den aktuellen Einstellungen wird ausgedruckt (Hintergrundfarbe weiss)

Scope Offline

Im Offline-Modus (es ist kein Frequenzumrichter angeschlossen) kann über das Hauptfenster - Menü Scope Offline|Öffnen eine gespeicherte Messreihe geöffnet werden.

8 Makro-Editor

Der Makro-Editor ist konzipiert, um einfache Prozessabläufe zu erstellen. Die Oberfläche bietet die Möglichkeit durch Kontextmenüs, Toolbars oder Toolfenster ein Makro zu erstellen und anzupassen. Die einzelnen Anweisungen lassen sich per Drag n Drop in der Ansicht verschieben. Die Standardfunktionen, wie Speichern und Laden eines Makros, sind ebenfalls in das Kontextmenü integriert. Die Makros werden in im Standardformat "XML" gespeichert. Das Format der Vorgängerversion kann über den Menüpunkt "Öffnen" Dateityp "Makro Dateien V1.26" importiert werden.

8.1 Oberflächen und Ansichten

Für das Handling des Makro-Generators sind zusätzlich zum Editorfenster weitere Ansichten notwendig. Diese Ansichten sind als Tool-Fenster verfügbar. Diese Fenster können an den Rand des Hauptfensters an- bzw. abgedockt werden. Über den Menüpunkt "Ansicht" des Popup-Menüs können alle Ansichten angezeigt und geschlossen werden.

8.1.1 Variablenfenster

Die Ansicht "Variablen" kann über den Menüpunkt "Ansicht->Variablen" geöffnet und geschlossen werden. Sie dient zum Debuggen. In diesem Fenster werden nach dem Starten des Makros alle Variablen und Objekte des Makros mit dem aktuellen Werten angezeigt. Die Ausgabe des Werts kann in der Ansicht "Eigenschaften->Anzeigeformat" eingestellt werden.

Es gibt folgende Formatierungen:

- · dezimal Darstellung
- hexadezimal Darstellung
- binär Darstellung

8.1.2 Eigenschaftenfenster

Die Ansicht "Eigenschaft" kann über den Menüpunkt "Ansicht->Eigenschaften" geöffnet und geschlossen werden. In diesem Fenster werden alle Eigenschaften der aktuellen Anweisung angezeigt. Je nach Anweisung kann sich die Art und Anzahl der Eigenschaften ändern.

Name	Beschreibung
Ergebnis	Mit dieser Eigenschaft kann man das Objekt verändern, dem man einen neuen Wert zuweisen möchte. Es können nur Objekte gewählt werden, denen man einen neuen Wert zuweisen kann (z.B. Steuerwort, Parameter oder Variablen).
Operand	Mit dieser Eigenschaft kann der Benutzer das Objekt auswählen, das bei einer Zuweisung oder Operation verwendet werden soll.
Operator	Diese Eigenschaft legt die Art der Operation, z.B. Addition, fest.
Kommentar	Mit dieser Eigenschaft kann der Benutzer jeder Anweisung einen Kommentar zuweisen.

Im Makro-Generator werden Variablen, Steuer- oder Statuswort, Soll- bzw. Istwerte oder Parameter als Objekte bezeichnet. Jeder dieser Objekte hat unterschiedliche Parameter.

Objekt	Parameter	Beschreibung
Variable	Name	Der Parameter legt den Namen der Variable oder Konstante fest. In der Auswahlbox werden alle bereits verwendeten Variablen angezeigt. Möchte man eine neue Variable anlegen, muss ein noch nicht verwendeter Name eingetragen werden. Zwischen Groß- und Kleinschreibung wird nicht unterschieden.
	Anzeigeformat	Der Parameter legt das Anzeigeformat in der Ansicht "Variablen" fest. Es kann zwischen folgenden Darstellungen gewählt werden: • Dezimal • Hexadezimal • Binär
Konstante	Wert	Der Parameter legt den Wert der Konstante fest.
	Anzeigeformat	Der Parameter legt das Anzeigeformat in der Ansicht "Variablen" fest. Es kann zwischen folgenden Darstellungen gewählt werden: • Dezimal • Hexadezimal • Binär
Steuerwort, Statuswort	Knotennummer	Der Parameter legt die USS Knotennummer des gewünschten Gerätes fest. Hinweis: Da das aktuelle Steuerwort nicht aus dem Gerät gelesen werden kann, wird beim Starten des Scheduler das Steuerwort auf 0 gesetzt.
	Anzeigeformat	Der Parameter legt das Anzeigeformat in der Ansicht "Variablen" fest. Es kann zwischen folgenden Darstellungen gewählt werden: • Dezimal • Hexadezimal • Binär
Soll- und Istwert	Knotennummer	Der Parameter legt die USS Knotennummer des gewünschten Gerätes fest. Hinweis: Da die aktuellen Sollwerte nicht aus dem Gerät gelesen werden können, werden beim Starten des Scheduler die Werte auf 0 gesetzt.
	Тур	Der Parameter legt den Typ des Wertes fest. Dem Benutzer stehen die in Tabelle "Soll- bzw. Istwert Typen" aufgelisteten Typen zur Verfügung.
	Format	Der Parameter legt die Formatierung des Soll- bzw. Istwerte fest. Die möglichen Formatierungen sind in der Tabelle "Soll- bzw. Istwert Formatierungen" dargestellt.
	Auflösung	Der Parameter legt die Auflösung des Soll- bzw. Istwerte fest. Er wird für die Formatierung der Anweisung im Editor verwendet.
	Anzeigeformat	Der Parameter legt das Anzeigeformat in der Ansicht "Variablen" fest. Es kann zwischen folgenden Darstellungen gewählt werden: • Dezimal • Hexadezimal • Binär

Objekt	Parameter	Beschreibung
Parameter	Knotennummer	Der Parameter legt die USS Knotennummer des gewünschten Gerätes fest.
	Parameternum mer	Der Wert legt die Nummer des Parameters fest (siehe Ansicht "Gerätekatalog").
	Subindex	Der Wert legt den Subindex des Parameters fest.
	Auflösung	Der Wert legt die Auflösung des Soll- bzw. Istwerte fest. Er wird für die Formatierung der Anweisung im Editor verwendet.
	Datentyp	Der Wert legt den Datentyp des Parameters fest. In den aktuellen Geräten werden nur 2 Datentypen verwendet (16 Bit Integer und 32 Bit Integer).
	Anzeigeformat	Der Parameter legt das Anzeigeformat in der Ansicht "Variablen" fest. Es kann zwischen folgenden Darstellungen gewählt werden: • Dezimal • Hexadezimal • Binär

Soll- bzw. Istwert Typen

Тур	Beschreibung
Wert 1 (16bit)	Es soll der 1,2 bzw 3 Soll- bzw. Istwert verwendet werden.
Wert 12 (32bit)	Es soll der erste und zweite Soll- bzw. Istwert als ein 32bit Wert verwendet werden.
	Hinweis: Für diese Konfiguration muss das Gerät entsprechend konfiguriert sein (siehe "Soll- bzw. Istwert Konfigurierung").
Wert 13 (32bit)	Es soll der 1. und 3. Soll- bzw. Istwert als ein 32bit Wert verwendet werden.
	Hinweis: Für diese Konfiguration muss das Gerät entsprechend konfiguriert sein (siehe "Soll- bzw. Istwert Formatierungen").
Wert 23 (32bit)	Es soll der 2. und 3. Soll- bzw. Istwert als ein 32bit Wert verwendet werden.
	Hinweis: Für diese Konfiguration muss das Gerät entsprechend konfiguriert sein (siehe "Soll- bzw. Istwert Formatierungen").

Soll- bzw. Istwert Formatierungen

Formatierung	Beschreibung
Normiert	Diese Formatierung interpretiert den Soll- bzw. Istwert als 16 Bit normierten Wert. Normierung bedeutet eine Skalierung des Wertebereichs und liegt zwischen -200% und 199% eines Basiswertes (z.B. Nennfrequenz).
Unnormiert	In dieser Formatierung wird der Soll- oder Istwert als 16 Bit Wert interpretiert, der ohne Skalierung an das Gerät übertragen und angezeigt wird.

Formatierung	Beschreibung
Lowword (32bit)	Diese Formatierung legt fest, dass der erste Wert das Lowword und der 2. Wert das Highword Wert 12 (32bit). Dieser Wert kann nur bei den 32bit Typen ausgewählt werden.
Highword (32bit)	Diese Formatierung legt fest, dass der erste Wert das Highword und der 2. Wert das Lowword Wert 12 (32bit). Dieser Wert kann nur bei den 32bit Typen ausgewählt werden.

Hinweis:

Bitte beachten Sie, dass die Konfiguration der Geräte mit den Einstellungen übereinstimmen.

8.1.3 Protokollfenster

Alle Ereignisse der Ablaufsteuerung werden in einem Protokoll gespeichert. Um das Protokoll anzuzeigen, muss man über den Menüeintrag "Ansicht->Protokoll" die Ansicht "Protokoll" öffnen. Das Fenster ist ebenfalls ein Tool-Fenster und kann an den Rand des Hauptfensters an- bzw. abgedockt werden. Im Fenster werden alle Protokolleinträge in einer sortierten Liste dargestellt. Hierbei befindet sich der letzte Eintrag im am Anfang der Liste.

Speichern des Protokolls

Das Speichern des Protokolls kann man mit dem Menüpunkt "Speichern unter…" des Popup-Menüs ausführen. Anschließend öffnet sich ein Dateiauswahldialog und der Benutzer muss ein Namen und den Pfad der Protokolldatei festlegen. Bestätigt der Benutzer mit "Speichern", wird die aktuelle Liste in die Textdatei gespeichert.

Löschen des Protokolls

Das Löschen des Protokolls kann man mit dem Menüpunkt "Löschen" des Popup-Menüs ausführen. Anschließend werden alle Einträge unwiderruflich gelöscht.

Filterung der Einträge

Mit der Filter-Funktion kann der Benutzer die Protokolleinträge entsprechend ihres Typs filtern. Über den Menüeintrag "Filter" kann man die Typen der Einträge festlegen, die in das Protokoll eingetragen werden sollen.

8.2 Bearbeiten von Makros

8.2.1 Neues Makro anlegen

Ein neues Dokument (Makro) wird über den Menüpunkt "Neu" im Kontextmenü angelegt. Wurde zuvor ein anders Dokument bearbeitet, bietet der Makro-Generator das Speichern des alten Dokumentes an. Bestätigt der Benutzer mit "Abbrechen" wird kein neues Dokument angelegt. Gleichzeitig kann in der aktuellen Version nur ein Dokument bearbeitet werden.

8.2.2 Makro Öffnen

Das Öffnen eines Makros wird über den Menüpunkt "Öffnen" oder mit der Tastenkombination "Strg+O" ausgeführt. Anschließend öffnet sich ein Dateiauswahldialog, in dem der Benutzer das gewünschte Makro auswählen kann. Möchte der Benutzer ein Makro der Vorgängerversion öffnen, muss man den Datentyp im Dateiauswahldialog entsprechend ändern.

8.2.3 Makro Speichern

Das Speichern eines Makros wird über den Menüpunkt "Speichern" oder der Tastenkombination "Strg+S" ausgeführt. Diese Funktion steht aber nur für bereits vorhanden Dokumente zur Verfügung. Für allen neuen Dokumente muss die Funktion "Speichern unter…" ausgeführt werden.

Die Funktion "Speichern unter…" wird über den Menüpunkt "Speichern unter…" ausgeführt. Anschließend öffnet sich ein Dateiauswahldialog, in dem der Benutzer den Dateinamen sowie den Pfad auswählen muss. Nach der Bestätigung mit "Speichern" wird das Makro gespeichert. Nach der Beendigung des Vorgangs wird der neue Name des Makros in der Titelleiste angezeigt.

8.2.4 Einfügen von Anweisungen

Die Funktion "Einfügen" wird über den Menüpunkt "Einfügen" oder die Tastenkombination "Strg+V" ausgeführt. Sie fügt eine zuvor kopierte oder ausgeschnittene Anweisung unterhalb der aktuellen Position im Dokument ein. Wurde vorher keine Anweisung kopiert oder ausgeschnitten, ist der Menüpunkt deaktiviert. In der aktuellen Version kann man jede kopierte oder ausgeschnittene Anweisung nur einmal einfügen.

8.2.5 Kopieren von Anweisungen

Die Funktion "Kopieren" wird über den Menüpunkt "Kopieren" oder die Tastenkombination "Strg+C" ausgeführt. Sie kopiert die markierte Zeile in die Zwischenablage des Generators. In der aktuellen Version kann immer nur eine Zeile markiert werden. Dementsprechend kann auch nur immer eine Anweisung kopiert werden. Die Ausnahme bildet die Block-Anweisung. Sie kann nur als Ganzes kopiert werden.

8.2.6 Ausschneiden von Anweisungen

Die Funktion "Ausschneiden" wird über den Menüpunkt "Ausschneiden" oder die Tastenkombination "Strg+X" ausgeführt. Sie kopiert die markierte Anweisung in die Zwischenablage des Generators. Mit dem Einfügen der ausgeschnittenen Anweisung wird die alte Anweisung aus dem Dokument gelöscht. Die Beschränkung, dass nur eine Anweisung ausgeschnitten werden kann, besteht auch bei dieser Funktion.

8.2.7 Löschen von Anweisungen

Die Funktion "Löschen" wird über den Menüpunkt "Löschen" oder der Tastenkombination "Del" ausgeführt. Sie löscht die markierte Anweisung aus dem Dokument.

8.2.8 Suchen und Ersetzen

Die Funktion "Suchen und Ersetzen" wird über den Menüpunkt "Suchen und Ersetzen" oder der Tastenkombination "Strg+H" ausgeführt. Anschließend öffnet sich der Dialog "Suchen und Ersetzen". Hier kann der Benutzer die entsprechenden Such.- und Ersetzenparameter vornehmen und die Änderungen ausführen.

8.2.9 Anweisung nach oben verschieben

Die Funktion "Nach oben" wird über den Menüpunkt "Nach oben" ausgeführt. Sie verschiebt die markierte Anweisung um eine Zeile nach oben. Ist die markiert Zeile am Anfang des Dokuments wird keine Aktion ausgeführt. Das Verschieben von Anweisungen kann der Benutzer auch per Drag n Drop mit der Maus ausführen.

8.2.10 Anweisung nach unten verschieben

Die Funktion "Nach unten" wird über den Menüpunkt "Nach unten" ausgeführt. Sie verschiebt die markierte Anweisung um eine Zeile nach unten. Ist die markiert Zeile am Ende des Dokuments wird keine Aktion ausgeführt. Das Verschieben von Anweisungen kann der Benutzer auch per Drag n Drop mit der Maus ausführen.

8.2.11 Erstellen von neuen Anweisungen

Das Erstellen von neuen Anweisungen wird über den Menüpunkt "Funktionen" im Kontextmenü erreicht. Die neuen Anweisungen werden immer unterhalb der markierten Zeile eingefügt. Anschließend kann der Benutzer die Position der neuen Anweisung (siehe "Nach oben" bzw. "Nach unten" verschieben) verändern.

Dem Benutzer stehen in dieser Version folgende Funktionen zur Verfügung:

Name	Beschreibung
Zuweisung	Die Anweisung weist einem Makro-Objekt einen neuen Wert zu. Der neue Wert kann aus einem anderen Objekt ausgelesen werden, oder der Benutzer definiert eine Konstante. Standardmäßig wird die Zeile im Beispiel 1 eingefügt. Die Parameter Funktion kann in der Ansicht "Eigenschaften" angepasst werden.
	Beispiel:
	Device 00 Controlword = 047F hex // Weise dem Steuerwort den Wert 1151 zu
	Var1 = Device 00 Statusword // Weise der Variable den Wert des Statuswortes zu
	Hinweis:
	Eine Zuweisung von Sollwerten kann nur innerhalb einer Block-Anweisung ausgeführt werden.
Sprungmarke	Die Anweisung definiert im Makro einen Sprungpunkt. Mit Hilfe der Funktion "Goto" kann der Benutzer an die Stelle der Sprungmarke springen. Standardmäßig wird die Zeile im Beispiel 1 eingefügt. Die Parameter Funktion kann in der Ansicht "Eigenschaften" angepasst werden. Der Name des Sprungpunktes sollte auf jeden Fall geändert werden, da doppelte Namen nicht unterstützt werden. Der Generator springt immer an die erste Sprungmarke im Makro.
	Beispiel:
	Label1: // Definierte den Sprungmarke "Label1"
	oder
	Start: // Definierte den Sprungmarke "Start"
Warten	Die Anweisung erzeugt eine Pause im Ablauf des Makros. Die enthaltene Zeitangabe ist in der Einheit "ms". Standardmäßig wird die Anweisung im Beispiel 1 eingefügt. Die Zeit kann in der Ansicht "Eigenschaften" angepasst werden.
	Beispiel:
	Sleep 1000 ms // Warte 1s
	oder
	Sleep 500 ms // Warte 0,5s
Gehe zu	Die Anweisung erzeugt einen Sprung im Makro. Nach dem Ausführen der Anweisung springt der Generator in die Zeile der Sprungmarke mit dem enthaltenen Namen. Findet der Generator keine Sprungmarke mit dem Namen, wird die Zeile ignoriert. Ist noch keine Sprungmarke im Makro definiert, ist der Menüeintrag deaktiviert. Standardmäßig wird immer die erste Sprungmarke eingetragen. Der Name der Sprungmarke kann in der Ansicht "Eigenschaften" angepasst werden.
	Beispiel:

Name	Beschreibung			
	Goto Start // Gehe zum Sprungpunkt "Start"			
Bedingung	Die Anweisung erzeugt einen bedingten Sprung im Makro. Ist die Bedingung wahr springt der Generator in die Zeile der Sprungmarke mit dem enthaltenen Namen. Standardmäßig wird die Zeile im Beispiel 1 eingefügt. Die Parameter der Anweisung können in der Ansicht "Eigenschaften" verändert werden.			
	Beispiel:			
	if Device 00 Controlword == 047F hex then // hat das Steuerwort den Wert 1151 Goto Start // dann gehe zur Sprungmarke "Start"			
Block	Die Anweisung ermöglicht dem Benutzer mehrere Zuweisungen in einer Anweisung auszuführen. Diese Zuweisungen beschränken sich auf die Objekte "Steuerwort" und "Sollwerte" eines Gerätes. Je nach Konfiguration des Gerätes und Verwendungszweck kann der Benutzer zwischen "Steuerwort mit 1 Sollwert", "Steuerwort mit 2 Sollwerten" oder "Steuerwort mit 3 Sollwerten" wählen.			
	Beispiel:			
	Block // Steuerwort und Sollwert1 mit 1 USS Protokoll senden			
	Device 00 Controlword = 1151 // Steuerwort den Wert 1151 zuweisen			
	Device 00 Setpoint1 = 20,0 // Sollwert1 den Wert 20 zuweisen			
Mathematik und logische Verknüpfung	Diese Anweisungen ermöglichen dem Benutzer einfache mathematische und logische Operationen von Objekten. Der neu berechnete Wert wird anschließend einem Objekt zugewiesen. Die Parameter der Anweisung können in der Ansicht "Eigenschaften" verändert werden.			
	Beispiel:			
	Var1 = Device 00 Controlword + 047F hex // Addition-			
	Var1 = Device 00 Statusword AND 047F hex // "Und" Verknüpfung			

8.3 Ablaufsteuerung

Der "Scheduler" steuert den Ablauf des Makros. Für das Modul gibt es zwei Optionen.

Auto

Ist diese Option aktiviert (Automatik-Modus) wird nach dem Starten des Schedulers Zeile für Zeile abgearbeitet. Wurde Sie deaktiviert (Einzelschritt-Modus) muss der Benutzer manuell (Menüeintrag "Nächste" oder Tastenkombination "F12") jede Anweisung ausführen.

Schleife

Ist diese Option aktiviert wird das Makro in einer Endlosschleife ausgeführt. Das bdeutet nach dem Ausführen der letzten Anweisung springt der Scheduler wieder an den Anfang des Makros.

8.3.1 Ablauf starten

Der Scheduler wird über den Menüpunkt "Starten" oder die Tastenkombination "F9" gestartet. Ist der Automatik-Modus aktiv, wird jetzt Zeile für Zeile abgearbeitet. Im Einzelschritt-Modus wird nach dem Starten nur die erste Zeile ausgeführt. Für die nächsten Zeilen muss der Benutzer jeweils die Aktion "Nächste" aufrufen. Der Scheduler kann erst wieder gestartet werden, wenn das Makro abgearbeitet wurde oder der Benutzer den Ablauf abgebrochen hat. Während der Scheduler läuft, kann man die Parameter der Anweisungen nicht bearbeiten.

8.3.2 Ablauf abbrechen

Der Scheduler wird über den Menüpunkt "Abbrechen" oder der Tastenkombination "F11" abgebrochen

8.3.3 Nächste Anweisung ausführen

Die Aktion "Nächste Anweisung ausführen" ist über den Menüpunkt "Nächste" oder der Tastenkombination "F12" ausführbar. Sie ist nur im Einzelschritt-Modus verfügbar und weist den Scheduler an, die nächste Anweisung im Makro auszuführen. Wurde die letzte Anweisung ausgeführt, wird der Scheduler automatisch beendet.

9 USS Frame-Editor

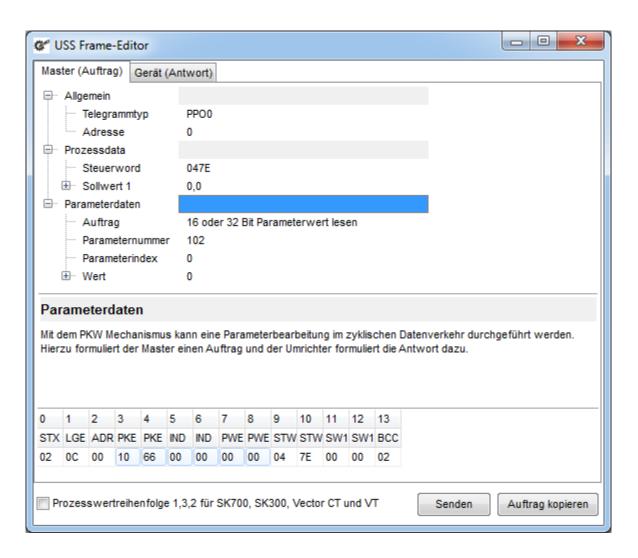
Das USS- Protokoll definiert ein Zugriffsverfahren nach dem Master- Slave- Prinzip für die Kommunikation über einen seriellen Bus. Als Untermenge ist darin auch die Punkt- zu- Punkt- Verbindung eingeschlossen. Am Bus können ein Master und max. 31 Slaves angeschlossen werden. Die einzelnen Slaves werden vom Master über ein Adresszeichen im Telegramm angewählt. Ein direkter Nachrichtenaustausch zwischen den einzelnen Slaves ist nicht möglich. Die Kommunikation erfolgt im Halbduplex- Betrieb mittels USS Telegrammen.

Der USS Frame Editor wurde für die Erzeugung und die Analyse von USS Telegrammen entwickelt. Er ist vollständig in die Oberfläche von NORDCON integriert und wird über den Menüpunkt "Extras/USS Frame-Editor" geöffnet. Der Editor stellt das Master und Slave-Telegramm in mehreren Ansichten dar. Über Registerkarten kann der Benutzer zwischen dem 9.1 "Master (Auftrag)" und dem 9.2 "Gerät (Antwort)" wechseln.

Objekt	Beschreibung			
Telegrammtyp	Das Objekt legt die Größe und den Aufbau des USS Telegramms fest. Die Geräte unterstützen die Typen:			
	Тур	Länge (LGE)	Beschreibung	
	PPO 0	12	Standardtelegramm mit Prozessdaten und 16 Bit Parameterwert	
	PPO 1	14	erweitertes Parameter-Telegramm mit 32 Bit Parameterwert und Prozessdaten	
	PPO 2	18	Telegramm mit erweiterten Prozessdaten (Haupt- und zwei Nebensollwerten) und 32 Bit Parameterwert	
	PPO 3	6	Prozessdaten-Telegramm mit Hauptsollwert ohne Parameterdaten	
	PPO 4	10	erweitertes Prozessdaten-Telegramm mit Haupt- und Nebensollwerten ohne Parameterdaten	
	PPO 6	16	Telegramm mit 5 Soll/Istwerten.	
			Achtung: Dieser Telegrammtyp wird nicht von allen Geräten unterstützt.	

A duaga a	Das Objekt onthält die Adresse des angesprechenen Gerätes					
Adresse	Das Objekt enthält die Adresse des angesprochenen Gerätes.					
5.3.5 "Zustandswort"	Das Objekt enthält die Zustandsbits des Gerätes.					
5.3.6 "Steuerwort"	Das Objekt enthält die Steuerbits (z.B. Freigabe oder Schnellhalt).					
Soll/Istwert 1-5	Die Soll/Istwerte sind 16bit oder 32bit Werte. Je nach Parametrierung des Gerätes epräsentieren sie unterschiedliche Parameter (z.B. Frequenzsollwert oder Lagesollwert).					
Format	Das Objekt enthält das Format des Sollwertes. Folgende Formate werden unterstützt:					
	 16 Bit normiert Wert Diese Formatierung interpretiert den Sollwert als 16 Bit normierten Wert. Normierung bedeutet eine Skalierung d Wertebereichs und liegt zwischen -200% und 199% eine Basiswertes (z.B. Nennfrequenz). 					
	16 Bit unnormiert In dieser Formatierung wird der Sollwert als 16 Bit Wer interpretiert, der ohne Skalierung an das Gerät übertrag und angezeigt wird.					
Parameterauftrag	Das Objekt enthält den Parameterauftrag. Folgende Aufträge sind definiert: Parameterwert anfordern Parameterwert ändern (16bit) Parameterwert ändern (32bit) Parameterwert anfordern (Array) Parameterwert ändern (Array, 16bit) Parameterwert ändern (Array, 32bit) Anzahl der Arrayelemente anfordern Parameterwert ändern (Array Doppelwort) ohne ins EEPROM zu schreiben Parameterwert ändern (Array Wort) ohne ins EEPROM zu schreiben Parameterwert ändern (Doppelwort) ohne ins EEPROM zu schreiben Parameterwert ändern (Wort) ohne ins EEPROM zu schreiben					
Parameternummer	Das Objekt enthält die Parameternummer.					
Index	Das Objekt enthält die Parameterindex.					
Wert	Das Objekt enthält den Parameterwert. Je nach Telegrammtyp ist es ein 16 oder 32bit großer Wert. Die Darstellung des Wertes ist noch von der Auflösung des Wertes abhängig.					
Auflösung	Das Objekt enthält die Auflösung des Parameters. Bei einer Änderung der Auflösung wird nur die Darstellung des Parameterwertes verändert. Den Wert für die Auflösung entnehmen Sie aus der Geräteanleitung.					

Prozesswertreihenfolge 1,3,2 für SK700, SK300, Vector CT und VT


Mit der Option kann die Reihenfolge für den 2 und 3 Prozesswert für die älteren Geräte geändert werden. Diese Option hat nur Auswirkungen auf die Telegrammtypen PPO 2 und PPO 4. Die Reihenfolge der Prozesswerte wird in der Tabellenansicht angezeigt.

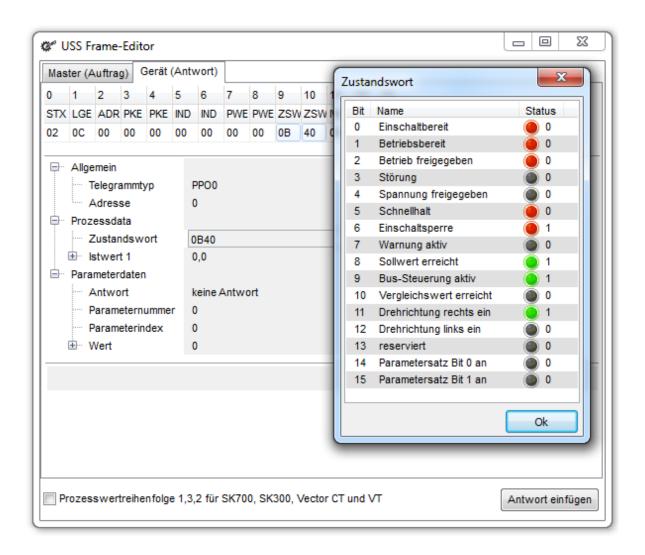
9.1 Master (Auftrag)

Die Ansicht ist in mehrere Bereiche unterteilt. Im oberen Bereich wird das Auftragstelegramm in einer Baumstruktur dargestellt. In der Baumstruktur werden die einzelnen Bestandteile des Telegramms thematisch aufgelistet. Jeder Eintrag, der weiß hinterlegt ist, kann vom Benutzer angepasst werden. Hierfür muss ein Eintrag mit der Maus oder Tastatur markiert werden. Mit einem weiteren Klick auf

den Eintrag wird der Eingabeeditor geöffnet. Der Eingabeeditor kann je nach Eintrag unterschiedlich sein. Bei Zahlenwerten wird der Eingabeeditor auch beim Drücken einer Zahlentaste geöffnet. Durch Drücken der "Enter" Taste oder durch markieren eines anderen Eintrags wird die Eingabe des neuen Wertes übernommen und der Eingabeeditor wieder geschlossen. Konnte der Wert nicht übernommen werden, wird weiterhin der alte Wert verwendet. Ist der Eingabeeditor eine Auswahlliste wird ein neuer Wert bei der Auswahl eines Eintrags übernommen und der Eingabeeditor geschlossen. Soll eine Änderung nicht übernommen werden, muss der Benutzer den Eingabeeditor mit der Taste "Esc" verlassen. Für jeden markierten Eintrag wird unterhalb der Baumstruktur eine Beschreibung angezeigt. Im unteren Bereich wird das Auftragstelegramm nochmal byteweise in einer Tabelle dargestellt. Die markieren Zellen entsprechen den markierten Eintrag in der Baumstruktur.

Anfrage kopieren

Die Aktion wandelt das Auftragstelegramm in einen hexcodierten Bytestring um und kopiert den String in die Windows-Zwischenablage.


9.2 Gerät (Antwort)

Die Ansicht ist in mehrere Bereiche unterteilt. Im oberen Bereich wird das Antworttelegramm byteweise in einer Tabelle dargestellt. In dieser Tabelle kann der Benutzer das Antworttelegramm anpassen. Alle Bytes bis auf STX, LGE und BCC können verändert werden. Der Benutzer wählt eine Zelle aus und trägt einen neuen Wert in die Tabelle ein. Soll die Länge und Struktur des Telegramms verändert werden, muss das Kontextmenü der Tabelle geöffnet werden. Anschließend wählt man einen neuen Telegrammtyp im Menü aus.

Bei jeder Änderung wird die nachfolgende Baumstruktur aktualisiert. Die Baumstruktur dient nur zur Visualisierung der Bestandteile des USS Telegramms und kann nicht editiert werden. Eine Ausnahme macht die Formatierung der Istwerte und die Auflösung des Parameterwertes. Diese Informationen sind nicht im USS Telegramm enthalten. Die Formatierung muss entsprechend der Einstellungen für die Istwerte angepasst werden. Auch die Auflösung muss gemäß dem Parameter ausgewählt werden. Den Wert entnehmen Sie aus der Anleitung für das entsprechende Gerät.

Das Statuswort wird in der Baumstruktur hexadezimal dargestellt. Für die Visualisierung der einzelnen Bits wurde eine weitere Ansicht implementiert. Um die Ansicht zu öffnen muss man das Statuswort markieren. Mit einem weiteren Klick auf den Eintrag wird der Eingabeeditor im schreibgeschützten Modus geöffnet. Der Benutzer kann anschließend mit der Schaltfläche "…" die Ansicht öffnen.

Antwort einfügen

Die Aktion öffnet einen Eingabedialog für ein Antworttelegramm. Der Benutzer kann hier das Telegramm als hexcodierten Bytestring eingeben.

10 PLC

10.1 Allgemeines

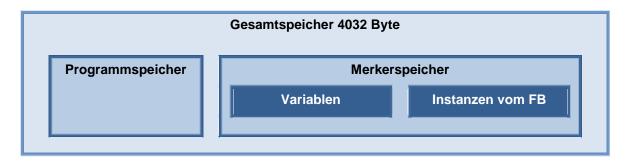
NORD Frequenzumrichter der Baureihen SK 180E/SK 190E, SK 2xxE, SK 2xxE-FDS und SK 5xxE sowie die Motorstarter der Baureihe SK 155E-FDS/SK 175E-FDS enthalten eine Logikverarbeitung, welche an die für Speicherprogrammierbare Steuerungen (SPS / PLC) geltende Norm IEC61131-3 angelehnt ist. Die Reaktionsgeschwindigkeit oder Rechenleistung dieser PLC ist geeignet kleinere Aufgaben im Umfeld des Umrichters zu übernehmen. So können Umrichter-Eingänge oder über einen Feldbus ankommende Informationen überwacht, ausgewertet und in entsprechende Sollwerte für den Frequenzumrichter weiterverarbeitet werden. Im Zusammengehen mit anderen NORD Geräten ist auch eine Visualisierung von Anlagenzuständen und Eingabe von speziellen Kundenparametern möglich. Somit ergibt sich im begrenzten Bereich ein Einsparungspotential über das Weglassen einer bisherigen externen PLC Lösung. Als Programmiersprache wird AWL unterstützt. AWL ist eine maschinennahe textbasierende Programmiersprache, deren Umfang und Anwendung in der IEC61131-3 festgelegt ist.

1 Information

Die Programmierung und der Download in das Gerät erfolgen ausschließlich über die NORD Software NORD CON.

10.1.1 Spezifikation der PLC

Funktion	Spezifikation					
Standard	An IEC61131-3 angelehnt					
Sprache	Instruction List (IL), strukturi	erter Text (ST)				
Task	Ein zyklischer Task, Program	maufruf alle 5 ms				
Rechenleistung	Zirka 200 AWL Befehle auf 1	ms				
Programmspeicher	SK 5xxE, SK 2xxE, SK 2x0E-FDS	SK 190E / SK 180E	SK 155E-FDS / SK 175E-FDS			
	8128 Byte für Merker, Funktionen und das PLC Programm	2032 Byte für Merker, Funktionen und das PLC Programm	2028 Byte für Merker, Funktionen und das PLC Programm			
Max. mögliche Anzahl von Befehlen	ungefähr 2580 Befehle ungefähr 660 Befehle ungefähr 660 Befehle Hinweis: Dies ist ein Durchschnittswert, eine starke Verwendung von Merkern, Prozessdaten und Funktionen minimiert die möglich Zeilenanzahl erheblich, siehe Abschnitt Resourcen.					
Frei ansprechbare CAN Mailboxen	20					
Unterstützte Geräte	SK 54xE SK 53xE / SK 52xE ab V3.0 SK 2xxE ab V2.0 SK 2x0E-FDS SK 180E / SK 190E					



Funktion	Spezifikation
	SK 155E-FDS / SK 175E- FDS

10.1.2 PLC Aufbau

10.1.2.1 Speicher

Der Speicher in der PLC wird in Programm- und Merkerspeicher unterteilt. Im Bereich des Merkerspeichers werden neben den Variablen auch die Instanzen von Funktionsblöcken abgelegt. Eine Instanz ist ein Speicherbereich, in dem alle internen Ein- und Ausgabevariablen eines FB abgelegt werden. Jede FB Deklaration benötigt eine eigene Instanz. Die Grenze zwischen Programm- und Merkerspeicher wird dynamisch festgelegt, abhängig von der Größe des Merkerbereiches.

Im Merkerspeicher werden im Bereich Variablen zwei verschiedene Klassen abgelegt:

[VAR]

Speichervariable zum Ablegen von Hilfsinformationen und Zuständen. Variablen dieses Typs werden bei jedem Start der PLC neu initialisiert. Während des zyklischen Ablaufs der PLC bleiben die Speicherinhalte erhalten.

[VAR_ACCESS]

Dient zum Einlesen und Beschreiben von Prozessdaten (Eingänge, Ausgänge, Sollwerte, usw.) des Frequenzumrichters. Diese Werte werden bei jedem PLC Zyklus neu erzeugt

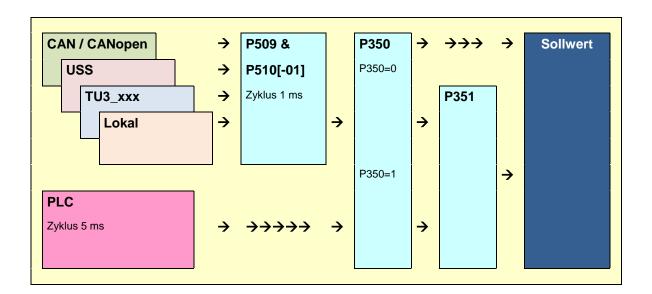
10.1.2.2 Prozessabbild

Das Gerät verfügt über etliche physikalische Größen wie Drehmoment, Drehzahl, Position, Eingänge, Ausgänge, usw. Diese Größen unterteilen sich in Ist- und Sollwerte. Sie können im Prozessabbild der PLC geladen und beeinflusst werden. Die benötigten Prozesswerte müssen in der Variablenliste unter der Klasse VAR_ACCESS definiert werden. Mit jedem PLC Zyklus werden alle in der Variablenliste definierten Prozessdaten des Umrichters neu eingelesen. Am Ende jedes PLC Zyklus werden die beschreibbaren Prozessdaten wieder dem Umrichter übergeben, siehe nachfolgende Abbildung.

Aufgrund dieses Ablaufes ist es wichtig, einen zyklischen Programmablauf zu programmieren. Das Programmieren von Schleifen, um auf bestimmte Ereignisse zu warten (z.B. Pegeländerung an einem Eingang), führt nicht zum gewünschten Ergebnis. Bei Funktionsblöcken, die auf Prozesswerte zugreifen, ist dieses Verhalten anders. Hier werden die Prozesswert mit dem Aufruf des

Funktionsblockes gelesen und bei Beendigung des Blockes werden die Prozesswerte sofort geschrieben.

1 Information


Werden Motion Blöcke MC_Power, MC_Reset, MC_MoveVelocity, MC_Move, MC_Home oder MC_Stop verwendet, dann dürfen die Prozesswerte "PLC_Control_Word" und "PLC_Set_Val1" bis "PLC_Set_Val5" nicht verwendet werden. Anderenfalls würden die Werte in der Variablenliste immer die Änderung des Funktionsblockes überschreiben.

10.1.2.3 Programm Task

Die Programmausführung in der PLC erfolgt in einer einzigen Task. Die Task wird zyklisch alle 5 ms aufgerufen und ihre max. Bearbeitungsdauer beträgt 3 ms. Kann ein längeres Programm in dieser Zeit nicht abgearbeitet werden, dann wird die Programmausführung unterbrochen und in der nächsten 5 ms Task fortgeführt.

10.1.2.4 Sollwert Verarbeitung

Der Umrichter verfügt über eine Vielzahl von Sollwertquellen, die letztendlich über mehrere Parameter zu einem resultierenden Frequenzumrichter Sollwert miteinander verknüpft werden.

Bei aktivierter PLC (P350=1) erfolgt über die P509 & P510[-01] eine Vorselektion der von außen eingehenden Sollwerte (Hauptsollwerte). Über den P351 wird dann letztlich entschieden, welche Sollwerte von der PLC oder den über P509/P510[-01] eingehenden Werten genommen wird. Auch ein Mix aus beiden ist möglich. Bei den Nebensollwerten (P510[-02]) verändert sich im Zusammenhang mit der PLC Funktion nichts. Alle Nebensollwertquellen und die PLC übergeben ihre Nebensollwerte gleichberechtigt an den Frequenzumrichter.

10.1.2.5 Datenverarbeitung über Akku

Der Akkumulator bildet die zentrale Recheneinheit der PLC. Fast alle AWL-Befehle funktionieren nur im Zusammenhang mit dem Akkumulator. In der NORD PLC existieren gleich drei Akkumulatoren. Dabei handelt es sich um die 32Bit großen Akku1 und Akku2, sowie das AE im Format BOOL. Das AE wird für alle boolschen Lade-, Speicher- und Vergleichsoperationen herangezogen. Wird ein boolscher Wert geladen so wird er im AE dargestellt. Vergleichsoperanden liefern das Ergebnis im AE ab und bedingte Sprünge werden aufgrund des AE ausgelöst. Akku1 und Akku2 werden für alle Operanden

im Datenformat BYTE, INT und DINT verwendet. Bei Akku1 handelt es sich um den Hauptakkumulator während Akku2 nur Hilfsfunktionen übernimmt. Alle Lade und Speicheroperanden laufen über Akku1. Alle arithmetischen Operatoren speichern ihr Ergebnis unter Akku1 ab. In Akku2 wird bei jedem Ladebefehl der Inhalt von Akku1 verschoben. Ein nachfolgender Operator kann dann beide Akkumulatoren miteinander verknüpfen oder auswerten und das Ergebnis wieder in Akku1, der im Folgenden auch allgemein als "Akku" bezeichnet wird. speichern.

10.1.3 Funktionsumfang

Die PLC unterstützt eine Vielzahl von Operatoren, Funktionen und Standardfunktionsbausteinen, die in der IEC1131-3 definiert sind. Eine detaillierte Darstellung ist in den nachfolgenden Kapiteln enthalten. Des Weiteren werden Funktionsblöcke erläutert, die zusätzlich unterstützt werden.

10.1.3.1 Motion Control Lib

Die Motion Control Lib ist an die PLCopen Specification "Function blocks for motion control" angelehnt. In ihr sind hauptsächlich Funktionsblöcke zum Verfahren des Antriebs enthalten. Zusätzlich werden auch Funktionsblöcke zum Lesen und Schreiben von Geräteparametern bereitgestellt.

10.1.3.2 Elektronisches Getriebe mit Fliegender Säge

Der Frequenzumrichter verfügt über die Funktionen elektronisches Getriebe (Gleichlauf im Positioniermodus) und Fliegende Säge. Über diese Funktionen kann der Umrichter mit einem anderen Antrieb winkelsynchron mitfahren. Weiterhin ist es über die Zusatzfunktion Fliegende Säge möglich, sich positionsgenau auf einen fahrenden Antrieb zu synchronisieren. Der Betriebsmodus elektronisches Getriebe kann jederzeit gestartet und beendet werden. Damit ist eine Kombination von klassischer Lageregelung mit ihren Verfahrbefehlen und Getriebefunktion möglich. Für die Getriebefunktion wird an der Masterachse zwingend ein NORD Frequenzumrichter mit internem CAN-Bus benötigt.

10.1.3.3 Visualisierung

Mit Hilfe einer ControlBox bzw. einer ParameterBox sind die Visualisierung des Betriebszustandes und die Parametrierung des Frequenzumrichters möglich. Alternativ können auch über die CANopen Master Funktionalität der PLC CAN-Bus Panels zur Anzeige von Informationen verwendet werden.

ControlBox

Die einfachste Variante zur Visualisierung ist die ControlBox. Über zwei Prozesswerte kann auf das 4 stellige Display und den Zustand der Tastatur zugegriffen werden. Damit können sehr schnell einfache HMI Applikationen erstellt werden. Damit die PLC auf die Anzeige zugreifen kann muss der P001 auf "PLC-Controlbox Value" eingestellt werden. Eine weitere Besonderheit ist, dass das Parametermenü nicht mehr über die Pfeiltasten erreicht wird. Stattdessen müssen die "On" und "Enter" Taste zeitgleich betätigt werden.

ParameterBox

Im Visualisierungsmodus kann über die PLC jedes der 80 Zeichen im P-Box Display (4 Zeilen a 20 Zeichen) gesetzt werden. Es ist möglich Zahlen wie auch Texte zu übertragen. Weiterhin können Tastatureingaben auf der P-Box von der PLC erfasst werden. Damit ist eine Realisierung komplexerer HMI Funktionen (Anzeige von Istwerten, Bildwechsel, Übergabe von Sollwerten, usw.) möglich. Der Zugriff auf die P-Box Anzeige erfolgt über Funktionsblöcke in der PLC. Die Visualisierung erfolgt über die Betriebswertanzeige der ParameterBox. Der Inhalt der Betriebswertanzeige wird über den P-Box Parameter P1003 eingestellt. Dieser Parameter befindet sich unter dem Hauptmenüpunkt "Anzeige". P1003 muss auf den Wert "PLC-Anzeige" eingestellt werden. Über die Pfeiltasten Rechts oder Links kann die Betriebswertanzeige danach wieder angewählt werden. Hier wird jetzt das von der PLC

kontrollierte Display angezeigt. Diese Einstellung bleibt auch nach einem erneuten Einschalten erhalten.

10.1.3.4 Prozessregler

Der Prozessregler ist ein PID-T1 – Regler mit begrenzter Ausgangsgröße. Mit Hilfe dieses Funktionsbausteines können in der PLC auf einfache Weise komplexe Regelungen aufgebaut werden, über die sich etliche Prozesse, wie z.B. Druckregelungen, deutlich eleganter lösen lassen als mit den häufig verwendeten Zweipunktreglern.

10.1.3.5 CANopen Kommunikation

Neben den standardmäßig vorhandenen Kommunikationskanälen bietet die PLC noch weitere Möglichkeiten zu kommunizieren. Über die CAN Bus Schnittstelle des Frequenzumrichters bzw. über den Systembus kann dieser mit anderen Geräten zusätzliche Kommunikationsbeziehungen aufbauen. Das dabei verwendete Protokoll ist CANopen. Die Kommunikationsbeziehungen sind dabei auf den PDO Datentransfer und NMT Kommandos beschränkt. Die per Standard im Frequenzumrichter vorhandene CANopen Kommunikation über SDO, PDO1, PDO2 und Broadcast bleibt von dieser PLC - Funktion unbeeinträchtigt.

PDO (Prozess Daten Objects)

Über PDO können andere Frequenzumrichter gesteuert und überwacht werden. Es ist aber auch möglich Geräte anderer Anbieter an die PLC anzubinden. Dies können IO-Baugruppen, CANopen Geber, Panels, usw. sein. Damit kann die Anzahl der Ein/Ausgänge des Frequenzumrichters beliebig erweitert werden, auch analoge Ausgänge wären dann möglich.

NMT (Network Management Objects)

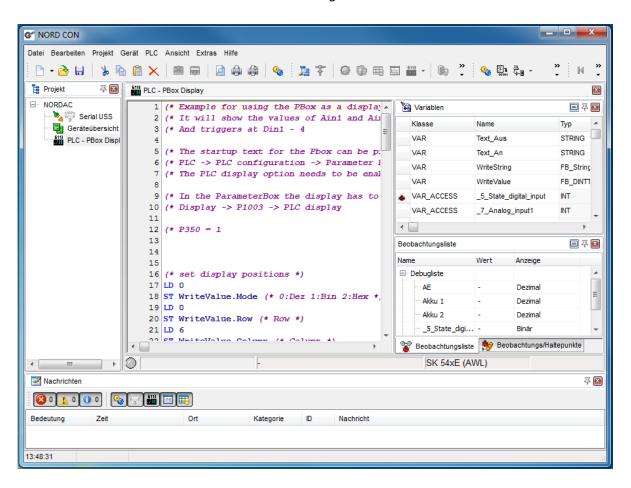
Alle CANopen Geräte müssen vom Busmaster in den CANopen Bus State "Operational" gebracht werden. Erst in diesem Buszustand ist eine PDO Kommunikation möglich. Wenn sich kein Busmaster in dem CANopen Bus befindet, muss dies durch die PLC erfolgen. Für diesen Zweck gibt es den Funktionsbaustein FB_NMT.

10.2 Erstellen von PLC Programmen

Die Erstellung der PLC Programme erfolgt ausschließlich über das PC-Programm NORD CON. Der PLC Editor wird entweder über den Menüpunkt "Datei/Neu/PLC Programm" oder durch das Symbol geöffnet. Diese Schaltfläche ist nur aktiv, wenn in der Geräteübersicht ein Gerät mit PLC Funktionalität den Fokus hat.

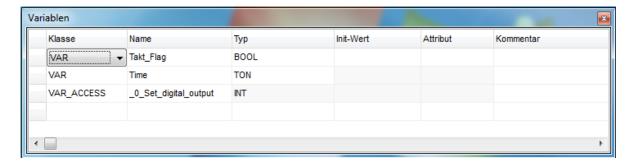
10.2.1 Laden, Speichern & Drucken

Die Funktionen Laden, Speichern und Drucken erfolgen über die entsprechenden Einträge im Hauptmenü oder die Symbolleisten. Beim Öffnen ist es empfehlenswert, im Dialog "Öffnen" den Dateityp auf "PLC Programm" (*.awlx, *.nstx) zu setzen. Damit werden nur noch Dateien, die vom PLC Editor gelesen werden können, angezeigt. Soll das erstellte PLC Programm gespeichert werden, dann muss das Fester vom PLC Editor aktiv sein. Das PLC Programm wird durch Betätigen von "Speichern" oder "Speichern unter" gesichert. Bei der Operation "Speichern unter" kann dies auch am Eintrag des Dateityp (Programm PLC (*.awlx*.nstx)) erkannt werden. Für das Drucken des PLC Programmes muss auch das entsprechende PLC Fenster aktiv sein. Der Ausdruck wird dann über "Datei/Drucken" oder das passende Symbol gestartet.


PLC Programme können zusätzlich auch als gesichertes PLC Programm gespeichert werden. Hierfür muss der Benutzer im Dateiauswahldialog den Dateityp auf "AWL Dateien gesichert" oder "ST Dateien gesichert" einstellen. Anschließend wird das PLC Programm in einer verschlüsselten (*.awls

oder *.nsts) und normalen Version (*.awlx, *.nstx) abgespeichert. Das verschlüsselte PLC Programm kann nur noch zum Gerät übertragen werden (siehe 2.2.4 "Kategorie "Gerät"").

10.2.2 Editor


Der PLC – Editor ist in vier verschiedene Fenster aufgeteilt.

Die einzelnen Fenster werden in den nachfolgenden Abschnitten näher erläutert.

10.2.2.1 Variablen und FB Deklaration

In diesem Fenster werden alle im Programm benötigten Variablen, Prozesswerte und Funktionsblöcke deklariert.

Variablen

Variablen werden angelegt, indem die Klasse "VAR" eingestellt wird. Der Name für die Variable ist frei wählbar. Im Feld Typ kann zwischen BOOL, BYTE, INT und DINT gewählt werden. Für die Variablen kann eine Startinitialisierung unter Init-Wert eingetragen werden.

Prozesswerte

Diese werden angelegt indem unter Klasse der Eintrag "VAR_ACCESS" selektiert wird. Der Name ist nicht frei wählbar und das Feld Init-Wert ist für diesen Typ gesperrt.

Funktionsbausteine

Unter Klasse wird der Eintrag "VAR" selektiert. Der Name für die jeweilige Instanz des Funktionsbausteins (FB) ist frei wählbar. Der gewünschte FB wird unter Typ selektiert. Ein Init-Wert ist für FB nicht einstellbar.

Alle Menüpunkte, die das Variablenfenster betreffen, werden über das Kontextmenü aufgerufen. Hierüber können Einträge hinzugefügt und gelöscht werden. Sowie Variablen und Prozessvariablen zur Beobachtung (Watchpoint Funktion) oder zum Debuggen (Breakpoint) aktiviert werden.

10.2.2.2 Eingabefenster

Das Eingabefenster dient zur Programmeingabe und auch Darstellung des AWL-Programmes. Es verfügt über folgende Funktionen:

- Syntax Hervorhebung
- Lesezeichen
- Variablen Deklaration
- Debugging

Syntax Hervorhebung

Werden der Befehl und die ihm zugeordnete Variable vom Editor erkannt, dann wird der Befehl blau und die Variable schwarz dargestellt. Solange dies nicht der Fall ist, erfolgt die Darstellung in dünner, schräger, schwarzer Schrift.

Lesezeichen

Da Programme im Editor durchaus eine beträchtliche Länge erreichen können, ist es möglich über die Funktion Lesezeichen wichtige Stellen im Programm zu markiert und gezielt anzuspringen. Zur Markierung einer Zeile muss sich der Cursor in der betreffenden Zeile befinden. Über den Menüpunkt "Lesezeichen umschalten" (rechte Maustaste Menü) wird die Zeile mit dem gewünschten Lesezeichen markiert. Angesprungen werden die Lesezeichen über den Menüpunkt "Gehe zu Lesezeichen".

Variablen Deklaration

Über das Editor Menü "Variable hinzufügen" (rechte Maustaste) können vom Editor aus neue Variablen deklariert werden.

Debugging

Für die Funktion Debugging werden im Editor die Position der Break- und Watchpoints festgelegt. Dies kann über die Menüpunkte "Haltepunkt umschalten" (Breakpoints) und "Beobachtungspunkt umschalten" (Watchpoints) passieren. Die Position von Breakpoints kann zusätzlich über einen Klick auf der linken Randleise des Editorfensters festgelegt werden. Variablen und Prozesswerte, die während des Debuggings aus dem Frequenzumrichter ausgelesen werden sollen, müssen markiert werden. Dies kann im Editor über die Menüpunkte "Variable debuggen" und "Variable beobachten" erfolgen. Dazu muss die entsprechende Variable markiert sein, bevor der gewünschte Menüpunkt angewählt wird.

10.2.2.3 Watch- & Breakpoint Anzeigefenster

Dieses Fenster verfügt über zwei Tab Reiter die nachfolgend erläutert werden.

Haltepunkte

In diesem Fenster sind alle gesetzten Breakpoint und Watchpoints zu sehen. Sie können über die Checkboxen ein-/ausgeschaltet und über die "Entfernen Taste" gelöscht werden. Über die rechte Maustaste kann ein entsprechendes Menü aufgerufen werden.

Beobachtungsliste

Hier werden alle zur Beobachtung ausgewählten Variablen dargestellt. In der Spalte Wert wird ihr aktueller Inhalt dargestellt. Über die Spalte Anzeige kann das Darstellungsformat ausgewählt werden.

10.2.2.4 PLC Meldungsfenster

In diesem Fenster werden alle Status- und Fehlermeldungen der PLC eingetragen. Für ein korrekt übersetztes Programm erscheint die Meldung "Fehlerfrei übersetzt". Eine Zeile tiefer wird der Ressourcenverbrauch angezeigt. Bei Fehlern im PLC Programm erscheint die Meldung "Fehler X", in X wird die Anzahl der Fehler dargestellt. In den folgenden Zeilen erscheint die konkrete jeweilige Fehlermeldung im Format:

[Zeilennummer]: Fehlerbeschreibung

10.2.3 Programm zum Gerät übertragen

Es gibt mehrere Wege, um ein PLC Programm zum Gerät zu übertragen.

PLC Programm direkt übertragen:

- 1. Gerät im Projektbaum auswählen.
- 2. Kontextmenü öffnen (rechte Maustaste drücken)
- 3. Funktion "PLC Programm zum Gerät übertragen" ausführen
- 4. Datei im Dateiauswahldialog auswählen und "Öffnen" drücken

PLC Programm mit den PLC Editor übertragen (Offline):

- 1. PLC Programm mit der Funktion "Öffnen" (Datei->Öffnen) öffnen
- 2. PLC Editor mit einem Gerät verbinden (PLC->Verbinden)
- 3. PLC Programm übersetzen
- 4. PLC Programm zum Gerät übertragen

PLC Programm mit den PLC Editor übertragen (Online):

- 1. Gerät im Projektbaum markieren
- 2. PLC Editor starten

- 3. PLC Programm öffnen
- 4. PLC Programm in die Online-Ansicht importieren
- 5. PLC Programm übersetzen
- 6. PLC Programm zum Gerät übertragen 4

a Information

SK 1xxE-FDS - begrenzte Anzahl an Schreibzyklen

In den Geräten SK 155E-FDS / SK 175E-FDS wird als Speichermedium ein Flash eingesetzt. Die Anzahl der Schreibzyklen eines Flashspeichers ist stark begrenzt. Deshalb wird standardmäßig das Programm nur in den RAM geladen. Es kann anschließend gestartet und getestet werden. Soll die PLC anschließend neu gestartet werden, muss das Programm erneut zum Gerät geladen werden, um die PLC Variablen zu initialisieren. Soll das Programm dauerhaft im Gerät gespeichert werden, muss der Benutzer die Aktion "Programm zum Gerät übertragen und speichern" ausführen.

10.2.4 Debugging

Da Programme nur in seltenen Fällen auf Anhieb funktionieren bietet die NORD PLC einige Möglichkeiten zur Fehlerfindung. Diese Möglichkeiten lassen sich grob in zwei Punkte unterteilen, auf die jetzt nachfolgend eingegangen wird.

10.2.4.1 Beobachtungspunkte (Watchpoints)

Die einfachste Debugging Variante ist die Watchpoint Funktion. Sie bietet einen schnellen Überblick über das Verhalten einiger Variablen. Dazu wird an beliebiger Stelle im Programm ein Beobachtungspunkt gesetzt. Wenn die PLC diese Programmzeile abarbeitet, werden bis zu 5 Werte gespeichert und in der Beobachtungsliste angezeigt (Fenster "Beobachtungsliste"). Die 5 zu beobachtenden Werte können im Eingabefenster oder Variablenfenster über das Kontextmenü ausgewählt werden. Wurde ein Watchpoint an eine Stelle ohne Programmcode gesetzt, sucht NORD CON die vorherige Codezeile. Wird diese Codezeile im Programmablauf erreicht, wird die Aktualisierung der Werte ausgeführt. Wird ein Watchpoint durch einen Sprung (JMP, IF, Switch Anweisung) übersprungen, werden keine Werte aktualisiert.

0 Information

Variablen von Funktionsblöcken können in der aktuellen Version nicht zur Watchliste hinzugefügt werden!

10.2.4.2 Haltepunkte (Breakpoints)

Über Haltepunkte ist es möglich das PLC Programm gezielt an einer gewünschten Programmzeile zu stoppen. Wenn die PLC in einen Haltepunkt hineinläuft werden das AE, Akku1 und Akku2 ausgelesen, sowie alle Variablen, die über den Menüpunkt "Variable debuggen" (Kontextmenü) selektiert wurden. Es können bis zu 5 Breakpoints im PLC Programm gesetzt werden. Gestartet wird diese Funktion

🕙. Das Programm läuft nun solange bis ein Haltepunkt ausgelöst wird. Eine erneute Betätigung der Symbolleiste lässt das Programm wieder frei laufen bis der nächste Haltepunkt

kommt. Soll das Programm wieder frei laufen, so wird das Symbol betätigt.

10.2.4.3 Einzelschritt (Single Step)

Mit dieser Debugging Methode ist es möglich das PLC Programm Zeile für Zeile in Einzelschritten abzuarbeiten. Mit jedem Einzelschritt werden alle ausgewählten Variablen aus der Geräte-PLC ausgelesen und im Fenster "Beobachtungsliste" angezeigt. Die zu beobachtenden Werte können im Eingabefenster oder Variablenfenster über das rechte Maustastenmenü ausgewählt werden.

Voraussetzung für das Debugging in Einzelschritten ist, dass vor dem Start des Debugging

mindestens ein Haltepunkt gesetzt wurde. Durch Betätigung des Symbols wird der Debugging Mode eingeschaltet. Erst wenn das Programm in den ersten Haltepunkt gelaufen ist, kann über das

Symbol in Einzelschritten durch die nachfolgenden Zeilen debuggt werden. Hinter einigen Befehlszeilen verbergen sich mehrere einzelne Befehle. Dadurch kann es passieren das zwei oder mehr Einzelschritte abgearbeitet werden bevor im Eingabefenster die Schrittanzeige weiterspringt. Die aktuelle Position wird über einen kleinen Pfeil am linken PLC Editorfenster angezeigt. Bei Betätigung

des Symbols läuft das Programm bis zum nächsten Haltepunkt weiter. Soll das Programm wieder frei laufen, so wird das Symbol betätigt.

10.2.5 PLC Konfiguration

Über das Symbol wird der PLC Konfigurationsdialog geöffnet. Hier können einige grundsätzliche Einstellungen für die PLC vorgenommen werden, auf die nachfolgend eingegangen wird.

Überwachung der Zykluszeit

Diese Funktion überwacht die max. Bearbeitungszeit für einen PLC Zyklus. Somit können ungewollt programmierte Dauerschleifen im PLC Programm abgefangen werden. Im Falle einer Überschreitung wird im Frequenzumrichter der Fehler E22.4 ausgelöst.

ParameterBox Funktionsbaustein zulassen

Soll im PLC Programm eine Visualisierung über die ParameterBox erfolgen, dann muss diese Option aktiviert sein. Andernfalls erzeugen die entsprechenden Funktionsblöcke beim Start des Frequenzumrichters einen Compiler Fehler.

Ungültige Steuerdaten

Die PLC kann die über die möglichen Bussysteme eingehenden Steuerwörter auswerten. Jedoch kommen die Steuerwörter nur durch, wenn das Bit "PZD gültig" (Bit 10) gesetzt ist. Sollen auch nicht USS Protokoll konforme Steuerwörter von der PLC ausgewertet werden können, dann muss diese Option aktiviert sein. Bit 10 im ersten Wort wird dann nicht mehr abgefragt.

Warmstart nach Fehler

Alle Variablen werden beim Start der PLC immer mit "0" oder ihren Initialisierungswert geladen. Dabei ist es egal ob der Start nach einem Stopp, Programmdownload oder PLC Fehler erfolgt. Über diese Option wird bei einem Warmstart der Inhalt der Variablen nicht verändert. Ein Warmstart erfolgt nach einem PLC Stopp Kommando oder einem PLC Fehler.

Systemzeit beim Haltepunkt nicht anhalten

Während des Debuggings, wenn die PLC im Haltepunkt oder sich im Einzelschrittmode befindet, wird die Systemzeit angehalten. Die Systemzeit bildet die Grundlage für alle Timer in der PLC. Soll die Systemzeit auch während des Debuggings weiterlaufen, dann ist diese Funktion zu aktivieren.

10.3 Funktionsblöcke

Funktionsblöcke sind kleinere Programme, die ihre Zustandswerte in internen Variablen ablegen können. Aus diesem Grund muss für jeden Funktionsblock eine eigene Instanz in der Variablenliste von NORD CON erzeugt werden. Soll z.B. ein Timer parallel 3 Zeiten überwachen, so muss er in der Variablenliste auch dreimal angelegt werden.

1 Information

Erkennen einer Signalflanke

Damit die nachfolgenden Funktionsblöcke eine Flanke am Eingang erkennen können, ist es notwendig, dass der Funktionsaufruf zwei Mal mit unterschiedlichen Zuständen am Eingang durchlaufen wird.

10.3.1 CANopen

Die PLC kann über Funktionsblöcke PDO-Kanälen konfigurieren, überwachen und auf ihnen senden. Über ein PDO können von der PLC bis zu 8 Byte Prozessdaten gesendet oder empfangen werden. Jedes dieser PDO wird über eine eigene Adresse (COB-ID) angesprochen. In der PLC können bis 20 PDO's konfiguriert werden. Zur einfacheren Bedienung wird nicht die COB-ID direkt eingegeben. Stattdessen werden Geräteadresse und die PDO Nummer an den FB übergeben. Die resultierende COB-ID wird auf Basis des Pre-Definded Connection Set (CiA DS301) ermittelt. Dadurch ergeben sich folgende mögliche COB-ID's für die PLC.

Sende PDO		Überwachte PDO		
PDO	COB-ID	PDO	COB-ID	
PDO1	200h + Geräteadresse	PDO1	180h + Geräteadresse	
PDO2	300h + Geräteadresse	PDO2	280h + Geräteadresse	
PDO3	400h + Geräteadresse	PDO3	380h + Geräteadresse	
PDO4	500h + Geräteadresse	PDO4	480h + Geräteadresse	

NORD Frequenzumrichter benutzen zur Prozessdatenübermittlung PDO1, nur für Soll-/Istwert 4 und 5 wird PDO2 verwendet.

10.3.1.1 Überblick

Funktionsbaustein	Erläuterung
FB_PDOConfig	PDO Konfiguration
FB_PDOSend	PDO senden
FB_PDOReceive	PDO empfangen
FB_NMT	PDO freigeben und sperren

10.3.1.2 FB_NMT

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

Nach einem *Power UP* befinden sich alle CAN Teilnehmer im Bus-Zustand Pre-Operational. In diesem Zustand können sie weder PDO empfangen noch senden. Damit die PLC mit anderen Teilnehmern auf dem CAN Bus kommunizieren kann, müssen diese in den Zustand Operational gesetzt werden. Im Regelfall übernimmt dies der Busmaster. Sollte es keinen Busmaster geben, so kann diese Aufgabe vom FB_NMT übernommen werden. Über die Eingänge **PRE**, **OPE** oder **STOP** kann der Zustand aller am Bus angeschlossenen Teilnehmer beeinflusst werden. Die Eingänge werden mit einer positiven Flanke an **EXECUTE** übernommen. Die Funktion muss solange aufgerufen werden, bis der Ausgang **DONE** oder **ERROR** auf 1 gesetzt wurde.

Wenn der Ausgang **ERROR** auf 1 gesetzt wurde, dann liegt entweder keine 24V Versorgung an der RJ45 CAN Buchse des Umrichters an oder der CAN – Treiber des Umrichters ist im Status *Bus off.* Bei einer negativen Flanke an **EXECUTE** werden alle Ausgänge auf 0 zurückgesetzt.

VAR_INPUT			VAR_OUTPUT			
Eingang	Eingang Erläuterung Typ		Ausgang	Erläuterung	Тур	
EXECUTE	Ausführen	BOOL	DONE	NMT Befehl wird gesendet	BOOL	
PRE	Setze alle Teilnehmer in den State Pre-Operational	BOOL	ERROR	Fehler im FB	BOOL	
OPE	Setze alle Teilnehmer in den State Operational	BOOL				
STOP	Setze alle Teilnehmer in den State Stopped	BOOL				

10.3.1.3 FB_PDOConfig

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	

Über diesen FB werden die PDO's konfiguriert. Mit einer Instanz dieser Funktion können alle gewünschten PDO's konfiguriert werden. Für jedes PDO muss der FB nur einmal aufgerufen werden. Es können bis zu 20 PDO eingerichtet werden. Jedes PDO hat seine eigene Parametrierung. Die Zuordnung der PDO's in den anderen CANopen FB's erfolgt über die Messagebox Number. Die TARGETID stellt die Geräteadresse dar. Bei NORD Frequenzumrichter wird diese im P515 oder über DIP Schalter eingestellt. Unter PDO wird die gewünscht Messagebox-Nummer eingetragen (siehe Einleitung). LENGTH legt die Sendelänge eines PDO fest. Über DIR wird die Sende-/Empfangsrichtung festgelegt. Mit der positiven Flanke am EXECUTE Eingang werden die Daten übernommen. Der DONE Ausgang kann sofort nach Aufruf des FB abgefragt werden. Wenn DONE auf 1 gesetzt ist, dann wurde der PDO-Kanal konfiguriert. Bei ERROR = 1 gab es ein Problem, die genaue Ursache ist in ERRORID abgelegt. Bei einer negativen Flanke an EXECUTE werden alle Ausgänge auf 0 zurückgesetzt.

Sende PDO		Überwachte PDO	
PDO COB-ID		PDO	COB-ID
PDO1	200h + Geräteadresse	PDO1	180h + Geräteadresse
PDO2	300h + Geräteadresse	PDO2	280h + Geräteadresse
PDO3	400h + Geräteadresse	PDO3	380h + Geräteadresse

NORD CON - Betriebsanleitung

PDO4	500h + Geräteadresse	PDO4	480h + Geräteadresse
PDO5	180h + Geräteadresse	PDO5	200h + Geräteadresse
PDO6	280h + Geräteadresse	PDO6	300h + Geräteadresse
PDO7	380h + Geräteadresse	PDO7	400h + Geräteadresse
PDO8	480h + Geräteadresse	PDO8	500h + Geräteadresse

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
EXECUTE	Ausführen	BOOL	DONE	PDO konfiguriert	BOOL	
NUMBER	Messagebox Nummer Wertebereich = 0 bis 19	BYTE	ERROR	Fehler im FB	BOOL	
TARGETID	Geräteadresse Wertebereich = 1 bis 127	BYTE	ERRORID	Fehlercode	INT	
PDO	PDO Wertebereich = 1 bis 4	BYTE				
LENGTH	PDO Länge Wertebereich = 1 bis 8	BYTE				
DIR	Senden oder Empfangen Senden = 1 / Empfangen = 0	BOOL				
ERRORID	Erläuterung					
0	Kein Fehler					
1800h	Wertebereich Number überschr	itten				
1801h	Wertebereich TARGETID überschritten					
1802h	Wertebereich PDO überschritten					
1803h	Wertebereich LENGT überschri	tten			_	

1 Information

Keine doppelte Verwendung der CAN ID

Es dürfen keine CAN-ID parametriert werden, die das Gerät schon benutzt!

Betreffende Empfangsadressen:

• CAN ID = 0x180 + P515[-01] PDO1

CAN ID = 0x180 + P515[-01]+1
 CAN ID für Absolutwertgeber

• CAN ID = 0x280 + P515[-01] PDO2

Betreffende Sendeadressen:

CAN ID = 0x200 + P515[-01] PDO1
 CAN ID = 0x300 + P515[-01] PDO2

Beispiel in ST:

```
(* PDO Konfigurieren *)
PDOConfig(
    Execute := TRUE,
    (* Messagebox 1 konfigurieren *)
   Number := 1.
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO1 Steuerwort, Sollwert1, Sollwert2, Sollwert3) *)
    PDO := 1,
    (* Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    LENGTH := 8,
    (* Senden *)
    Dir := 1);
oder
(* PDO Konfigurieren *)
PDOConfia(
    Execute := TRUE,
    (* Messagebox 1 konfigurieren *)
   Number := 2,
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO2 Sollwert4, Sollwert5 SK540E) *)
    PDO := 2,
    (* Länge der Daten festlegen (Standard für PDO2 gleich 4 *)
    LENGTH := 4.
    (* Senden *)
    Dir := 1);
oder
(* PDO Konfigurieren *)
PDOConfig(
    Execute := TRUE,
    (* Messagebox 2 konfigurieren *)
    Number := 2.
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO1 Statuswort, Istwert1, Istwert2, Istwert3) *)
    PDO := 1,
    (* Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    LENGTH := 8,
    (* Empfangen *)
    Dir := 0);
```

10.3.1.4 FB_PDOReceive

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarke	it X	X	X	X		

Dieser FB überwacht einen vorher konfigurierten PDO Kanal auf eingehende Botschaften. Die Überwachung startet wenn der ENABLE Eingang auf 1 steht. Nach dem Aufruf der Funktion ist der NEW Ausgang zu prüfen. Wenn er auf 1 geht, dann ist eine neue Botschaft angekommen. Der NEW Ausgang wird mit dem nächsten Aufruf der Funktion gelöscht. In WORD1 bis WORD4 stehen die empfangenen Daten. Über TIME kann der PDO Kanal auf zyklischen Empfang überwacht werden. Wird in TIME ein Wert zwischen 1 und 32767 ms eingetragen, dann muss in dieser Zeitspanne eine Botschaft empfangen werden. Anderenfalls geht der FB in den Fehlerzustand (ERROR = 1). Über den Wert 0 kann diese Funktion ausgeschaltet werden. Der Überwachungstimer läuft in 5 ms Schritten. Im Fehlerfall wird ERROR auf 1 gesetzt. DONE ist in diesem Fall 0. In der ERRORID ist dann der entsprechende Fehlercode gültig. Bei einer negativen Flanke an ENABLE werden DONE, ERROR und ERRORID zurückgesetzt.

VAR_INPU	т		VAR_OUTPUT		
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Ausführen	BOOL	NEW	Neues PDO empfangen	BOOL
NUMBER	Messagebox Nummer Wertebereich = 0 bis 19	BYTE	ERROR	Fehler im FB	BOOL
TIME	Watchdog-Funktion Wertebereich = 0 bis 32767 0 = ausgeschaltet 1 bis 32767 = Überwachungszeit	INT	ERRORID	Fehlercode	INT
			WORD1	Empfangsdaten Wort 1	INT
			WORD2	Empfangsdaten Wort 2	INT
			WORD3	Empfangsdaten Wort 3	INT
			WORD4	Empfangsdaten Wort 4	INT
ERRORID	Erläuterung				
0	Kein Fehler				
1800h	Wertebereich Number überschritte	en			
1804h	Angewählte Box ist nicht korrekt konfiguriert				
1805h	24 V für Bustreiber Fehlen oder Bustreiber ist im State "Bus off"				
1807h	Empfangs Timeout (Watchdog F	unktion)			

1 Information

PLC Zykluszeit

Der PLC Zyklus liegt bei 5 ms, d.h. bei einem Aufruf der Funktion im PLC Programm kann nur alle 5 ms eine CAN Botschaft ausgelesen werden. Werden mehrere Botschaften schnell aufeinander gesendet, können Botschaften überschrieben werden.

Beispiel in ST:

```
IF bFirstTime THEN
  (* Geräte in den Status Pre-Operational setzen *)
  NMT(Execute := TRUE, OPE := TRUE);
  IF not NMT.Done THEN
    RETURN;
  END_IF;
  (* PDO Konfigurieren *)
  PDOConfig(
    Execute := TRUE,
    (* Messagebox 2 konfigurieren *)
    Number := 2,
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO1 Statuswort, Istwert1, Istwert2, Istwert3) *)
    PDO := 1,
    (* Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    Length := 8,
    (* Empfangen *)
    \dot{D}ir := 0);
END IF;
(* Status und Istwerte auslesen *)
```



```
PDOReceive(Enable := TRUE, Number := 2);
IF PDOReceive.New THEN
   State := PDOReceive.Word1;
   Sollwert1 := PDOReceive.Word2;
   Sollwert2 := PDOReceive.Word3;
   Sollwert3 := PDOReceive.Word4;
END IF
```

10.3.1.5 FB_PDOSend

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X		

Mit diesem FB können PDO's auf einem vorher konfigurierten Kanal gesendet werden. Es ist möglich diese einmalig oder zyklisch zu senden. Die zu sendenden Daten werden in WORD1 bis WORD4 eingetragen. Ein Senden der PDO's ist unabhängig vom CANopen State des Frequenzumrichters möglich. Über NUMBER wird der vorher konfigurierte PDO Kanal ausgewählt. In WORD1 bis WORD4 werden die zu sendenden Daten eingetragen. Über CYCLE kann zwischen einmaligen Senden (Einstellung=0) oder zyklischen Senden gewählt werden. Über eine positive Flanke an EXECUTE wird das PDO abgeschickt. Bei DONE = 1 waren alle Eingaben korrekt und das PDO wird gesendet. Bei ERROR = 1 gab es ein Problem. Die genaue Ursache ist in ERRORID abgelegt. Alle Ausgänge werden mit negativer Flanke an EXECUTE zurückgesetzt. Die Zeitbasis der PLC ist 5 ms, dies gilt auch für den Eingang CYCLE. Es sind nur Sendezyklen mit einem Vielfachen von 5ms realisierbar.

VAR_INPU	Г		VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
EXECUTE	Ausführen	BOOL	DONE	PDO gesendet = 1	BOOL	
NUMBER	Messagebox Nummer Wertebereich = 0 bis 19	BYTE	ERROR	Fehler im FB	BOOL	
CYCLE	Sendezyklus Wertebereich = 0 bis 255 0 = ausgeschaltet 1 bis 255 = Sendezyklus in ms	ВҮТЕ	ERRORID	Fehlercode	INT	
WORD1	Sendedaten Wort 1	INT				
WORD2	Sendedaten Wort 2	INT				
WORD3	Sendedaten Wort 3	INT				
WORD4	Sendedaten Wort 4	INT				
ERRORID	Erläuterung					
0	Kein Fehler					
1800h	Wertebereich Number überschritten					
1804h	Angewählte Box ist nicht korrekt konfiguriert					
1805h	24 V für Bustreiber Fehlen oder B	ustreibe	r ist im State "E	Bus off"		

Wenn **DONE** auf 1 geht, dann wurde die zu sendende Botschaft vom CAN Modul übernommen, aber noch nicht gesendet. Das eigentliche Senden läuft parallel im Hintergrund. Sollen jetzt über einen FB mehrere Botschaften direkt hintereinander gesendet werden, dann kann es zu passieren, dass bei dem neuen Aufruf die vorherige Botschaft noch nicht gesendet wurde. Dies kann daran erkannt werden, dass weder das **DONE** noch das **ERROR** Signal nach den **CAL** Aufruf auf 1 gesetzt wurde. Der **CAL** Aufruf kann jetzt einfach so oft wiederholt werden, bis eines der beiden Signale auf 1 geht. Sollen über einen einzigen FB mehrere verschiedene CAN-ID's beschrieben werden, so ist dies über eine Neukonfiguration des FB's möglich. Diese darf jedoch nicht im selben PLC Zyklus wie das Senden erfolgen. Da sonst die Gefahr besteht, dass die zu sendende Botschaft bei der Konfiguration über den FB_PDOConfig gelöscht wird.

Beispiel in ST:

```
IF bFirstTime THEN
  (* Geräte in den Status Pre-Operational setzen *)
  NMT(Execute := TRUE, OPE := TRUE);
  IF not NMT.Done THEN
   RETURN;
  END IF;
  (* PDO Konfigurieren *)
  PDOConfig(
    Execute := TRUE.
    (* Messagebox 2 konfigurieren *)
    Number := 2,
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO1 Statuswort, Istwert1, Istwert2, Istwert3) *)
    PDO := 1,
    (* Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    Length := 8,
    (* Empfangen *)
    Dir := 0);
END_IF;
(* Status und Istwerte auslesen *)
PDOReceive (Enable := TRUE, Number := 2);
IF PDOReceive.New THEN
  State := PDOReceive.Word1;
  Sollwert1 := PDOReceive.Word2;
  Sollwert2 := PDOReceive.Word3;
  Sollwert3 := PDOReceive.Word4;
END IF
```

10.3.2 Elektronisches Getriebe mit Fliegender Säge

Für das elektronische Getriebe ("winkelsynchroner Gleichlauf") und die Unterfunktion Fliegende Säge gibt es zwei Funktionsblöcke, die eine Steuerung dieser Funktionen erlauben. Weiterhin müssen für einen korrekten Ablauf der beiden Funktionsblöcke im Master- und Slave- Frequenzumrichter diverse Parameter eingestellt werden. Exemplarisch ist dies in der nachfolgenden Tabelle am Beispiel eines SK 540E aufgeführt.

Master FU			Slave FU		
Parameter	Einstellung	Bedeutung	Parameter	Einstellung	Bedeutung
P502[-01]	20	Sollfreq. nach Freq.Rampe	P509	10 *	CANopen Broadcast *
P502[-02]	15	Istpos in Inc. High – Word	P510[-01]	10	CANopen Broadcast
P502[-03]	10	Istpos in Inc. Low – Word	P510[-02]	10	CANopen Broadcast

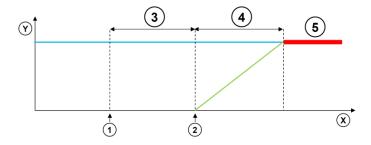
P503	3	CANopen	P505	0	0,0 Hz
P505	0	0,0 Hz	P515[-02]	P515[-03] _{Master}	Broadcast Slave Adresse
P514	5	250 kBaud (min. 100 kBaud)	P546[-01]	4	Frequenzaddition
P515[-03]	P515[- 02]Slave	Broadcast Master Adresse	P546[-02]	24	Sollpos. Inc. High – Word
			P546[-03]	23	Sollpos. Inc. Low – Word
			P600	1,2	Lageregelung an
			Nur für den l	FB_Gearing	
			P553[-01]	21	Pos. Sollpos Low Word
			P553[-02]	22	Pos. Sollpos High Word

^{* (}P509) muss nicht zwingend auf {10} "CANopen Broadcast" stehen. Dann jedoch ist am Master (P502 [-01]) auf die Einstellung {21} "Istfrequenz ohne Schlupf" zu stellen.

Information

Istlage - Übertragungsformat

Die Istlage des Masters muss zwingend im Format "Inkremente" (Inc) übergeben werden.


10.3.2.1 Überblick

Funktionsbaustein	Erläuterung
FB_Gearing	FB für die einfache Getriebefunktion
FB_FlyingSaw	FB für Getriebefunktion mit fliegender Säge

10.3.2.2 FB_FlyingSaw

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	Х	Х	X	

Die Funktion Fliegende Säge stellt eine Erweiterung zur Getriebefunktion dar. Mit Hilfe dieser Funktion ist es möglich auf einen fahrenden Antrieb positionsgenau zu synchronisieren. Die Synchronisierung erfolgt im Gegensatz zu FB_Gearing relativ, d.h. die Slave Achse verfährt synchron zu der Position des Masters, die beim Start der "Fliegenden Säge" anlag. Der Vorgang der Synchronisierung ist im nachfolgenden Bild dargestellt.

1	Position des Initiators
2	Startpunkt des Slave
3	Entfernung des Initiators zur Startposition des Slave-Frequenzumrichters
4	Beschleunigung
5	Gleichlauf beider Antriebe
х	Position
^	Position
Υ	Geschwindigkeit

Wird die Funktion gestartet, dann beschleunigt der Slave Frequenzumrichter auf die Geschwindigkeit der Masterachse. Die Beschleunigungsrampe wird über den Weg **ACCELERATION** festgelegt. Bei niedrigen Geschwindigkeit ist die Rampe so flacher und bei hohen Master Geschwindigkeiten ergibt sich eine steiler Rampe für den Slave Frequenzumrichter. Der Beschleunigungsweg wird in Umdrehungen (1000 = 1,000 rev) angegeben, wenn P553 als Sollposition angegeben ist. Wird für P553 Sollposition INC verwendet, dann wird der Beschleunigungsweg in Inkrementen angegeben.

Wird der Initiator mit der in **ACCELERATION** gespeicherten Entfernung vor die Position des Slave Antriebes gesetzt, dann wird der Slave präzise mit der auslösenden Position auf dem Masterantrieb synchronisiert.

Der FB muss über den **ENABLE** Eingang eingeschaltet werden. Der Start der Funktion kann entweder über einen digitalen Eingang (P420[-xx]=64, *Start Fliegende Säge*) oder **EXECUTE** erfolgen. Der Frequenzumrichter beschleunigt dann auf die Geschwindigkeit der Masterachse. Bei Erreichen der Synchronität zur Masterachse wird der **DONE** Ausgang auf 1 geschaltet.

Über den **STOP** Eingang oder die digitale Eingangsfunktion P420[-xx] = 77, *Fliegende Säge anhalten*, erfolgt ein Ausschalten der Getriebefunktion, der Frequenzumrichter bremst auf 0Hz und bleibt stehen. Über den **HOME** Eingang wird der Umrichter veranlasst auf die absolute Position 0 zu fahren. Nach Beendigung des **HOME** oder **STOP** Befehls ist der jeweils zugeordnete Ausgang aktiv. Über eine erneute Betätigung von **EXECUTE** oder den digitalen Eingang kann die Getriebefunktion wieder gestartet werden. Mit der digitalen Eingangsfunktion (P420[-xx] = 63, *Gleichlauf ausschalten*) kann die Getriebefunktion angehalten, und anschließend auf die absolute Position 0 gefahren werden.

Wird die Funktion durch die MC_Stop Funktion unterbrochen, dann wird **ABORT** auf 1 gesetzt. Im Fehlerfall wird **ERROR** auf 1 und in **ERRORID** der Errorcode gesetzt. Diese drei Ausgänge werden zurückgesetzt wenn **ENABLE** auf 0 geschaltet wird.

VAR_INPUT		VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
ENABLE	Freigabe	BOOL	VALID	Vorgegebene Sollfrequenz erreicht	BOOL	
EXECUTE	Start der Synchronisierung	BOOL	DONEHOME	Home Fahrt beendet		
STOP	Stop der Synchronisierung	BOOL	DONESTOP	Stop Kommando ausgeführt		
HOME	Verfährt auf Position 0	BOOL	ABORT	Befehl abgebrochen	BOOL	
ACCELERATION	Beschleunigungsweg (1rev. = 1.000)	DINT	ERROR	Fehler im FB	BOOL	
			ERRORID	Fehlercode	INT	
ERRORID	Erläuterung					
0	Kein Fehler					
1000h	FU ist nicht freigegeben					
1200h	Lageregelung ist nicht ak	ktiviert				

10.3.2.3 FB_Gearing

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	Х	Х	Х	Х	

Über den Funktionsbaustein FB_Gearing kann die Position und die Drehzahl des Frequenzumrichters auf die eines Masterumrichters synchronisiert werden. Der Slave, der diese Funktion verwendet, folgt immer den Bewegungen des Masterumrichters.

Die Synchronisierung erfolgt absolut, d.h. Slave- und Masterposition sind immer gleich.

1 Information

Wird der Slave mit einer anderen Position als der Master in den Getriebemode geschaltet, dann verfährt der Slave mit max. Frequenz zur Masterposition.

Wird ein Übersetzungsverhältnis angegeben, ergibt sich nach dem Wiedereinschalten auch eine neue Position.

Der Positionswert, auf den synchronisiert wird, sowie die Drehzahl, müssen über den Broadcast Kanal übertragen werden. Über den Eingang **ENABLE** wird die Funktion aktiviert, dabei muss die Lagereglung aktiv und die Endstufe freigegeben sein. Die Endstufe kann z.B. mit der Funktion MC_Power freigegeben werden. Wird **ENABLE** auf 0 gesetzt, dann bremst der Frequenzumrichter auf 0Hz und bleibt stehen. Der Umrichter befindet sich jetzt wieder im Mode Lageregelung. Wird der MC_Stop aktiviert, dann verlässt der Frequenzumrichter den Getriebemode und der **ABORT** Ausgang geht auf 1. Bei Fehlern im FB geht **ERROR** auf 1 und die Fehlerursache steht in **ERRORID**. Über ein setzten von **ENABLE** auf 0 kann **ERROR, ERRORID** und **ABORT** wieder zurückgesetzt werden.

VAR_INPUT			VAR_OUTPUT		
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Gleichlauf aktiv	BOOL	VALID	Getriebefunktion ist aktiv	BOOL
RELATIVE	Relative Mode (ab V2.1)	BOOL	ABORT	Befehl abgebrochen	BOOL
			ERROR	Fehler im FB	BOOL
			ERRORID	Fehlercode	INT
ERRORID	Erläuterung				
0	Kein Fehler				
1000h	FU ist nicht freigegeben				
1200h	Lageregelung ist nicht aktiviert				
1201h	Der PLC Sollwert Position High ist nicht parametriert				
1202h	Der PLC Sollwert Position Low	ist nicht	parametriert		

10.3.3 Motion Control

Die Motion Control Lib ist an die PLCopen Specification "Function blocks for motion control" angelehnt. Sie enthält Funktionsblöcke zum Steuern und Verfahren eines Frequenzumrichters und bietet Zugriff auf seine Parameter. Damit die Motion Blöcke funktionieren, müssen einige Einstellungen in den Parametern des Gerätes vorgenommen werden.

Funktionsblock	Benötigte Einstellungen		
MC_MoveVelocity	 P350 = PLC aktiv P351 = Hauptsollwert kommt von der PLC P553 [-xx] = Sollfrequenz P600 = Lageregelung (Positioniermode) ist ausgeschaltet 		
MC_MoveAbsolute	• P350 = PLC aktiv		
MC_MoveRelative	 P351 = Hauptsollwert kommt von der PLC P600 = Lageregelung (Positioniermode) ist eingeschaltet 		
MC_MoveAdditive	In P553 [-xx] (PLC_Sollwerte) muss die Sollposition High Word parametriert sei In P553 [-xx] (PLC_Sollwerte) muss die Sollposition I ow Word parametriert sei In P553 [-xx] (PLC_Sollwerte) muss die Sollposition I ow Word parametriert sei		
MC_Home	 In P553 [-xx] (PLC_Sollwerte) muss die Sollposition Low Word parametriert sei In P553 [-xx] (PLC_Sollwerte) muss die Sollfrequenz parametriert sei 		
MC_Power	• P350 = PLC aktiv		
MC_Reset	P351 = Steuerwert kommt von der PLC		
MC_Stop			

1 Information

Die PLC_Sollwert 1 bis 5 und das PLC Steuerwort lassen sich auch über Prozessvariablen beschreiben. Sollen jedoch die Motion Control FB's verwendet werden, dürfen keine entsprechenden Prozessvariablen in der Variablentabelle deklariert sein, da sonst die Ausgaben der Motion Control FB's überschrieben werden.

Information

Erkennen einer Signalflanke

Damit die nachfolgenden Funktionsblöcke eine Flanke am Eingang erkennen können, ist es notwendig, dass der Funktionsaufruf zwei Mal mit unterschiedlichen Zuständen am Eingang durchlaufen wird.

Funktionsblock	Erläuterung			
MC_ReadParameter	Lesezugriff auf die Parameter des Gerätes			
MC_WriteParameter	Schreibzugriff auf die Parameter des Gerätes			
MC_MoveVelocity	Verfahrbefehl im Drehzahlmode			
MC_MoveAbsolute	Verfahrbefehl mit absoluter Positionsangabe			
MC_MoveRelative	Verfahrbefehl mit relativer Positionsangabe			
MC_MoveAdditive	Verfahrbefehl mit additiver Positionsangabe			
MC_Home	Startet eine Homefahrt			
MC_Power	Ein-/Ausschalten der Motorspannung			
MC_ReadStatus	Gerätestatus			
MC_ReadActualPos	Liest die aktuelle Position aus			
MC_Reset	Fehlerreset im Gerät			
MC_Stop	Stoppt alle aktiven Verfahrbefehle			

10.3.3.1 MC_Control

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	

Dieser FB dient zum Steuern des FU und bildet die Möglichkeiten des FU Steuerwortes etwas detaillierter nach wie der MC_Power. Über die Eingänge **ENABLE**, **DISABLEVOLTAGE** und **QUICKSTOP** wird der FU gesteuert, siehe nachfolgende Tabelle.

Baustein Eingänge			Verhalten Frequenzumrichter
ENABLE QUICKSTOP DISABLEVOLTAGE		DISABLEVOLTAGE	
High	Low	Low	Der Frequenzumrichter wird eingeschaltet.
Low	Low	Low	Der Frequenzumrichter bremst auf 0Hz (P103) und schaltet dann den Motor spannungsfrei.
Х	Х	High	Der Frequenzumrichter wird sofort spannungsfrei geschaltet, der Motor dreht ungebremst aus.
Х	High	Low	Der Frequenzumrichter fährt einen Schnellstop (P426) und schaltet dann den Motor spannungsfrei

Über den Eingang PARASET kann der aktive Parametersatz eingestellt werden.

Wenn der Ausgang **STATUS** = 1 ist, dann ist der FU eingeschaltet und der Motor wird bestromt.

VAR_INPUT			VAR_OUTPUT					
Eingang	Eingang Erläuterung Typ		Ausgang	Erläuterung	Тур			
ENABLE	Freigabe	BOOL	STATUS	Motor wird bestromt	BOOL			
DISABLEVOLTA GE	Spannungsfrei schalten	BOOL	ERROR	Fehler im FB	BOOL			
QUICKSTOP	Schnellstop	BOOL	ERRORID	Fehlercode	INT			
PARASET	Aktiver Parametersatz Wertebereich: 0 - 3	BYTE						
ERRORID	Erläuterung							
0	Kein Fehler							
1001h	Stop Funktion ist aktiv	Stop Funktion ist aktiv						
1300h	FU befindet sich in einem	unerwar	teten State					

Beispiel in ST:

```
(* Gerät freigeben mit Dig3*)
Control.Enable := _5_State_digital_input.2;
(* Parametersätze werden über Dig1 und Dig2 festgelegt. *)
Control.ParaSet := INT_TO_BYTE(_5_State_digital_input and 2#11);
Control;
(* Ist Gerät freigegeben? *)
if Control.Status then
  (* Soll eine andere Position angefahren werden? *)
 if SaveBit3 <> _5_State_digital_input.3 then
    SaveBit3 := _5_State_digital_input.3;
    if SaveBit3 then
     Move.Position := 500000;
     Move.Position := 0;
    end if;
   Move(Execute := False);
  end if;
end_if;
(* Position anfahren wenn das Gerät freigegeben ist. *)
Move(Execute := Control.Status);
```

10.3.3.2 MC_Control_MS

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 155E-FDS SK 175E-FDS
Verfügbarkeit					X

Dieser FB dient zum Steuern des Starters (MS).

Baustein Eingä	inge	Verhalten Frequenzumrichter		
ENABLE_RIG ENABLE_LEFT QUICKST		QUICKSTOP	DISABLEVOLTAGE	
High	Low	Low	Low	MS wird eingeschaltet, rechtsdrehend
Low	High	Low	Low	MS wird eingeschaltet, linksdrehend
High	High	Low	Low	MS wird ausgeschaltet
Low	Low	Low	Low	MS bremst auf 0 Hz (P103) und schaltet dann den Motor spannungsfrei
Х	х	Х	High	MS wird sofort spannungsfrei geschaltet, der Motor dreht ungebremst aus

RIVES YSTEMS 10 PLC

Х	Х	High	Low	MS fährt einen Schnellstopp (P426) und
				schaltet dann den Motor spannungsfrei

(X = der Pegel am Eingang ist unwichtig)

Wenn der Ausgang **STATUS** = 1 ist, dann ist der MS eingeschaltet und der Motor wird bestromt. Wird **OPENBRAKE** auf 1 gesetzt, dann wird die Bremse geöffnet.

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
ENABLE_RIGHT	Freigabe rechts	BOOL	STATUS	Motor wird bestromt	BOOL		
ENABLE_LEFT	Freigabe links	BOOL ERROR		Fehler im FB	BOOL		
DISABLEVOLTA GE	Spannungsfrei schalten	BOOL	ERRORID	Fehlercode	INT		
QUICKSTOP	Schnellstopp	BOOL					
OPENBRAKE	Bremse öffnen	BOOL					
ERRORID	Erläuterung						
0	Kein Fehler						
1001h	Stopp Funktion ist aktiv						
1300h	MS befindet sich in einen	n unerwa	rteten State				

10.3.3.3 MC_Home

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	X	

Veranlasst den Frequenzumrichter eine Referenzpunktfahrt zu starten, sofern **EXECUTE** von 0 auf 1 wechselt (Flanke). Der Frequenzumrichter verfährt mit der in **VELOCITY** eingetragenen Sollfrequenz. Wenn der Eingang mit dem Positionsreferenzsignal (P420[-xx] = Referenzpunkt) aktiv wird, dann erfolgt eine Drehrichtungsumkehr. Bei der negativen Flanke des Positionsreferenzsignals wird der in **POSITION** stehende Wert übernommen. Anschließend bremst der Frequenzumrichter auf 0Hz ab, das Signal **DONE** geht auf 1. Während der gesamten **HOME** Fahrt ist der **BUSY** Ausgang aktiv.

Sollte der Vorgang abgebrochen werden (z.B. durch einen anderen MC Funktionsbaustein), wird **COMMANDABORTED** gesetzt.

Im Fehlerfall wird **ERROR** auf 1 gesetzt. **DONE** ist in diesem Fall 0. In der **ERRORID** ist dann der entsprechende Fehlercode gültig.

VAR_INPUT			VAR_OUTPUT			
Eingang Erläuterung		Тур	Ausgang Erläuterung		Тур	
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL	

POSITION	Sollposition	DINT	COMMAND- ABORTED	Befehl abgebrochen	BOOL				
VELOCITY	Sollfrequenz	INT	ERROR	Fehler im FB	BOOL				
			ERRORID	Fehlercode	INT				
			BUSY	Home Fahrt aktiv	BOOL				
ERRORID	Erläuterung	Erläuterung							
0	Kein Fehler								
1000h	FU ist nicht freigegeben								
1200h	Lageregelung ist nicht ak	tiviert							
1201h	In den PLC Sollwerten is	t die High	Position nicht	eingetragen (P553)					
1202h	In den PLC Sollwerten is	In den PLC Sollwerten ist die Low Position nicht eingetragen (P553)							
1D00h	Absolutwertgeber werder	n nicht ur	terstützt						

10.3.3.4 MC MoveAbsolute

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	Х	X	

Schreibt einen Positions- und Geschwindigkeitssollwert zum Frequenzumrichter, sofern **EXECUTE** von 0 auf 1 wechselt (Flanke). Die Sollfrequenz **VELOCITY** wird nach der im MC_MoveVelocity erläuterten Skalierung übergeben.

POSITION:

MODE = False:

Die Sollposition ergibt sich aus dem in **POSITION** übergebenen Wert.

MODE = True:

Der in **POSITION** übergebene Wert entspricht <u>um 1 erhöht</u> dem Index aus Parameter P613. Die in diesem Parameterindex hinterlegte Position entspricht der Sollposition.

Beispiel:

Mode = True; Position = 12

Der FB fährt die Position, die im aktuellen Parametersatz von P613[-13] steht, an.

Hat der Umrichter die Sollposition erreicht, so wird **DONE** auf 1 gesetzt. **DONE** wird mit dem Rücksetzen von **EXECUTE** gelöscht. Wenn **EXECUTE** vor dem Erreichen der Zielposition gelöscht wird, so wird **DONE** für einen Zyklus auf 1 gesetzt. Während des Verfahrens zur Sollposition ist **BUSY** aktiv. Sollte der Vorgang abgebrochen werden (z.B. durch einen anderen MC Funktionsbaustein), wird **COMMANDABORTED** gesetzt. Im Fehlerfall wird **ERROR** auf 1 und in **ERRORID** der entsprechende Fehlercode gesetzt. **DONE** ist in diesem Fall 0. Bei einer negativen Flanke an **EXECUTE** werden alle Ausgänge auf 0 zurückgesetzt.

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang Erläuterung		Тур		
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL		
POSITION	Sollposition	DINT	BUSY	Sollposition nicht erreicht	BOOL		
VELOCITY	Sollfrequenz	INT	COMMAND- ABORTED	Befehl abgebrochen	BOOL		
MODE	Modus Quelle Sollposition	BOOL	ERROR	Fehler im FB	BOOL		
			ERRORID	Fehlercode	INT		
ERRORID	Erläuterung						
0	Kein Fehler						
0x1000	FU ist nicht freigegeben						
0x1200	Lageregelung ist nicht aktiviert						
0x1201	In den PLC Sollwerten ist	In den PLC Sollwerten ist die High Position nicht eingetragen (P553)					
0x1202	In den PLC Sollwerten ist	t die Low	Position nicht e	eingetragen (P553)			

Beispiel in ST:

```
(* Das Gerät wird freigegeben, wenn DIG1 = TRUE *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* Das Gerät ist freigegeben und fährt auf Position 20000 mit 50% max. Frequenz.
        Der Motor benötigt für diese Aktion ein Geber und Lageregelung muss aktive sein. *)
   MoveAbs(Execute := _5_State_digital_input.1, Velocity := 16#2000, Position := 20000);
END_IF
```

10.3.3.5 MC_MoveAdditive

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	

Entspricht bis auf den Eingang **DISTANCE** in allen Punkten dem MC_MoveAbsolute. Die Sollposition ergibt sich aus der Addition von aktueller Sollposition und der übergebenen **DISTANCE**.

VAR_INPUT			VAR_OUTPUT			
Eingang Erläuterung Typ			Ausgang	Erläuterung		
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL	
DISTANCE	Sollposition	DINT	COMMAND- ABORTED	Befehl abgebrochen	BOOL	
VELOCITY	Sollfrequenz	INT	ERROR	Fehler im FB	BOOL	
MODE	Modus Quelle	BOOL	ERRORID Fehlercode		INT	

	Sollposition								
			BUSY	Sollposition nicht erreicht	BOOL				
ERRORID	Erläuterung	Erläuterung							
0	Kein Fehler								
1000h	FU ist nicht freigegeben								
1200h	Lageregelung ist nicht ak	tiviert							
1201h	In den PLC Sollwerten ist die High Position nicht eingetragen (P553)								
1202h	In den PLC Sollwerten ist die Low Position nicht eingetragen (P553)								

10.3.3.6 MC_MoveRelative

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	Х	X	

Entspricht bis auf den Eingang **DISTANCE** in allen Punkten dem MC_MoveAbsolute. Die Sollposition ergibt sich aus der Addition von aktueller Istposition und der übergebenen **DISTANCE**.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang Erläuterung		Тур	
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL	
DISTANCE	Sollposition	DINT	COMMAND- ABORTED	Befehl abgebrochen	BOOL	
VELOCITY	Sollfrequenz	INT	ERROR Fehler im FB		BOOL	
MODE	Modus Quelle Sollposition	BOOL	ERRORID	Fehlercode	INT	
			BUSY	Sollposition nicht erreicht	BOOL	
ERRORID	Erläuterung					
0	Kein Fehler					
1000h	FU ist nicht freigegeben					
1200h	Lageregelung ist nicht aktiviert					
1201h	In den PLC Sollwerten is:	In den PLC Sollwerten ist die High Position nicht eingetragen (P553)				
1202h	In den PLC Sollwerten is	t die Low	Position nicht e	eingetragen (P553)		

10.3.3.7 MC_MoveVelocity

SK 54xE	SK 53xE	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
SK 54XE	SK 52xE	SK ZXXE	SK ZXXE-FDS	SK 190E	SK 175E-FDS

Verfügbarkeit X X X	X
---	---

Setzt die Sollfrequenz für den Frequenzumrichter, sofern **EXECUTE** von 0 auf 1 wechselt (Flanke). Hat der Frequenzumrichter die Sollfrequenz erreicht, so wird **INVELOCITY** auf 1 gesetzt. Während der FU auf die Sollfrequenz beschleunigt, ist der **BUSY** Ausgang aktiv. Wurde **EXECUTE** bereits auf 0 gesetzt, dann wird **INVELOCITY** nur für einen Zyklus auf 1 gesetzt. Sollte der Vorgang abgebrochen werden (z.B. durch einen anderen MC Funktionsbaustein), wird **COMMANDABORTED** gesetzt.

Bei einer negativen Flanke an EXECUTE werden alle Ausgänge auf 0 zurückgesetzt.

VELOCITY wird skaliert nach folgender Formel eingegeben:

VELOCITY = (Sollfrequenz (Hz) x 0x4000) / P105

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
EXECUTE	Freigabe	BOOL	INVELOCIT Y	Vorgegebene Sollfrequenz erreicht	BOOL		
VELOCITY	Sollfrequenz	INT	BUSY	Sollfrequenz noch nicht erreicht	BOOL		
		COMMAND- ABORTED		Befehl abgebrochen	BOOL		
			ERROR	Fehler im FB	BOOL		
			ERRORID	Fehlercode	INT		
ERRORID	Erläuterung						
0	Kein Fehler						
1000h	FU ist nicht freigegeben						
1100h	FU nicht im Drehzahl Mo	FU nicht im Drehzahl Mode (Lageregelung aktive)					
1101h	Keine Sollfrequenz parar	metriert (F	P553)				

Beispiel AWL:

```
CAL Power
CAL Move

LD TRUE
ST Power.Enable

(* 20 Hz einstellen (Max. 50 Hz) *)
LD DINT#20
MUL 16#4000
DIV 50

DINT_TO_INT
ST Move.Velocity

LD Power.Status
ST Move.Execute
```


Beispiel in ST:

```
(* Gerät betriebsbereit wenn DIG1 gesetzt *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* Gerät freigeben mit 50% der max. Frequenz wenn DIG2 gesetzt *)
   MoveVelocity(Execute := _5_State_digital_input.1, Velocity := 16#2000);
END IF
```

10.3.3.8 MC Power

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	Х	X

Über diese Funktion kann die Endstufe des Gerätes ein- oder ausgeschaltet werden. Wird der **ENABLE** Eingang auf 1 gesetzt, dann wird die Endstufe freigegeben. Voraussetzung dafür ist das sich das Gerät im State "Einschaltsperre" oder "Einschaltbereit" befindet. Sollte das Gerät im State "Störung" oder "Störungsreaktion aktiv" sein, muss zuerst die Störung beseitig und quittiert werden. Erst dann kann eine Freigabe über diesen Block erfolgen. Befindet sich das Gerät im State "Nicht Einschaltbereit", ist ein Einschalten auch nicht möglich. In allen Fällen geht der FB in den Fehlerstate und **ENABLE** muss auf 0 gesetzt werden, um den Fehler zu quittieren.

Wird der **ENABLE** Eingang auf 0 gesetzt, dann wird das Gerät ausgeschaltet. Geschieht dies bei laufendem Motor, so wird dieser über die in P103 eingestellte Rampe vorher auf 0 Hz heruntergefahren.

Der Ausgang STATUS ist 1 wenn die Endstufe des Gerätes eingeschaltet ist, andernfalls ist er 0.

ERROR und ERRORID werden zurückgesetzt, wenn ENABLE auf 0 geschaltet wird.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung Typ		Ausgang	Erläuterung	Тур	
ENABLE	Freigabe	BOOL	STATUS	Motor wird bestromt	BOOL	
			ERROR	Fehler im FB	BOOL	
			ERRORID	Fehlercode	INT	
ERRORID	Erläuterung					
0	Kein Fehler					
1001h	Stopp Funktion ist aktiv					
1300h	Gerät befindet sich nicht	im State	"Einschaltbereit	." oder "Einschaltsperre"		

Beispiel in AWL:

```
CAL Power
CAL Move

LD TRUE
ST Power.Enable

(* 20 Hz einstellen (Max. 50 Hz) *)
LD DINT#20
MUL 16#4000
DIV 50

DINT_TO_INT
ST Move.Velocity

LD Power.Status
ST Move.Execute
```

Beispiel in ST:

```
(* Power Block aktivieren *)
Power(Enable := TRUE);
IF Power.Status THEN
   (* Das Gerät ist einschaltbereit *)
END IF
```

10.3.3.9 MC_ReadActualPos

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	

Liefert kontinuierlich die aktuelle Istposition des Frequenzumrichters, wenn **ENABLE** auf 1 steht. Sobald eine gültige Istposition am Ausgang anliegt wird **VALID** auf gültig gesetzt. Im Fehlerfall wird **ERROR** auf 1 gesetzt und **VALID** ist in diesem Fall 0.

Skalierung Position: 1 Motorumdrehung = 1000

VAR_INPUT			VAR_OUTPUT			
Eingang Erläuterung Typ		Ausgang	Erläuterung	Тур		
ENABLE	LE Freigabe BOOL VALID		VALID	Ausgang ist gültig		
			ERROR	Fehler im FB	BOOL	
			POSITION	Aktuelle Istposition des FU	DINT	

Beispiel in ST:

```
ReadActualPos(Enable := TRUE);
IF ReadActualPos.Valid THEN
   Pos := ReadActualPos.Position;
END_IF
```

10.3.3.10 MC_ReadParameter

		SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
I	Verfügbarkeit	X	X	X	X	X	X

Liest einen Parameter zyklisch aus dem Gerät, sofern ENABLE auf 1 gesetzt ist. Der gelesene Parameter wird in Value abgelegt und ist gültig, wenn DONE auf 1 gesetzt ist. Für die Dauer des Lesevorgangs wird der Ausgang BUSY 1 auf gesetzt. Bleibt ENABLE auf 1 dann wird der Parameter ständig zyklisch ausgelesen. Parameternummer und Index können jederzeit bei aktivem ENABLE geändert werden. Jedoch ist schwierig zu erkennen, wann der neue Wert ausgelesen ist, da das DONE Signal die gesamte Zeit 1 ist. In diesem Fall ist es empfehlenswert das ENABLE Signal für einen Zyklus auf 0 zu setzen, da das DONE Signal dann zurückgesetzt wird. Der Parameterindex ergibt sich aus dem Index in der Dokumentation minus 1. So wird z.B. P700 Index 3 ("Grund Einschaltsperre") über den Parameterindex 2 abgefragt. Im Fehlerfall wird ERROR auf 1 gesetzt. DONE ist in diesem Fall 0 und die ERRORID enthält den Fehlercode. Wird das ENABLE Signal auf 0 gesetzt, dann werden alle Signale und die ERRORID gelöscht.

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Ausgang Erläuterung			
ENABLE	Freigabe	BOOL	DONE	Value ist gültig	BOOL		
PARAMETERNU MBER	Parameternummer	INT	ERROR	Lesevorgang ist fehlgeschlagen	BOOL		
PARAMETERIND EX	Parameterindex	INT	BUSY	Der Vorgang ist nicht abgeschlossen	BOOL		
			ERRORID	Fehlercode	INT		
			VALUE	Ausgelesener Parameter	DINT		
ERRORID	Erläuterung				•		
0	unzulässige Parameternu	ımmer					
3	fehlerhafter Parametering	dex					
4	kein Array						
201	Ungültiges Auftragseleme	ent im zul	etzt empfanger	nen Auftrag			
202	Interne Antwortkennung	nicht abbi	ildbar				

Beispiel in ST:

```
(* Motionbaustein FB_ReadParameter *)
ReadParam(Enable := TRUE,Parameternumber := 102, ParameterIndex := 0);
IF ReadParam.Done THEN
  Value := ReadParam.Value;
  ReadParam(Enable := FALSE);
END IF
```

10.3.3.11 MC ReadStatus

	SK 54xE	SK 53xE	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
		SK 52xE			SK 190E	SK 175E-FDS
Verfügbarkeit	Х	X	X	Х	X	Х

Liest den Status des Gerätes aus. Die Statusmaschine orientiert sich an der PLCopen Spezifikation "Function blocks for motion control". Solange **ENABLE** auf 1 steht wird der Zustand ausgelesen.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
ENABLE	Freigabe	BOOL	VALID	Ausgang ist gültig	BOOL	
			ERROR	Fehler im FB	BOOL	
			ERRORSTO P	Das Gerät hat einen Fehler	BOOL	
			DISABLED	Die Endstufe des Gerätes ist ausgeschaltet	BOOL	
			STOPPING	Ein Stopp Befehl ist aktiv	BOOL	
			DISCRETEM OTION	Einer der drei Positionier FB ist aktiv	BOOL	
			CONTINUO USMOTION	Der MC_Velocity ist aktiv	BOOL	
			HOMING	Der MC_Home ist aktiv	BOOL	
			STANDSTIL L	Das Gerät hat keinen aktiven Verfahrbefehl. Es steht mit Drehzahl 0 U/min und eingeschalteter Endstufe.	BOOL	

Beispiel in ST:

```
ReadStatus(Enable := TRUE);
IF ReadStatus.Valid THEN
  fError := ReadStatus.ErrorStop;
  fDisable := ReadStatus.Disabled;
  fStopping := ReadStatus.Stopping;
  fInMotion := ReadStatus.DiscreteMotion;
  fInVelocity := ReadStatus.ContinuousMotion;
  fInHome := ReadStatus.Homing;
  fStandStill := ReadStatus.StandStill;
end if
```

10.3.3.12 MC_Reset

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	X

Rücksetzen eines Fehlers im Gerät (Störungsquittierung), bei einer steigenden Flanke von **EXECUTE**. Im Fehlerfall wird **ERROR** auf 1 gesetzt und die Fehlerursache in **ERRORID** eingetragen. Bei einer negativen Flanke an **EXECUTE** werden alle Fehler zurückgesetzt.

VAR_INPUT			VAR_OUTPUT			
Eingang Erläuterung Typ			Ausgang	Erläuterung	Тур	
EXECUTE	EXECUTE Start BOOL		DONE	Gerätefehler zurückgesetzt	BOOL	
			ERROR	Fehler im FB	BOOL	

	ERRORID Fehlercode INT								
			BUSY Resetvorgang ist noch aktiv BOO						
ERRORID	Erläuterung	Erläuterung							
0	Kein Fehler								
1001h	Stopp Funktion ist aktiv	Stopp Funktion ist aktiv							
1700h	Ein Fehler – Reset konnte nicht ausgeführt werden, die Ursache für den Fehler liegt noch an								

Beispiel in ST:

```
Reset(Execute := TRUE);
IF Reset.Done THEN
  (* Der Fehler wurde zurückgesetzt *)
Reset(Execute := FALSE);
ELSIF Reset.Error THEN
  (* Reset konnte nicht ausgeführt werden, die Ursache für den Fehler liegt noch an *)
Reset(Execute := FALSE);
END IF
```

10.3.3.13 MC_Stop

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

Bei steigender Flanke (0 auf 1) wird das Gerät in den Zustand **STANDINGSTILL** gesetzt. Alle gerade aktiven Motion Funktionen werden abgebrochen. Das Gerät bremst auf 0 Hz ab und schaltet die Endstufe aus. Solange der Stopp Befehl aktiv ist (**EXECUTE** = 1), werden alle anderen Motion FB geblockt. Der **BUSY** Ausgang wird mit der steigenden Flanke an **EXECUTE** aktiv und bleibt dies solange bis eine fallende Flanke an **EXECUTE** erfolgt.

VAR_INPUT			VAR_OUTPUT			
Eingang Erläuterung Typ			Ausgang Erläuterung			
EXECUTE	Start	BOOL	DONE	Befehl ist ausgeführt	BOOL	
			BUSY	Befehl ist aktiv	BOOL	

10.3.3.14 MC_WriteParameter_16 / MC_WriteParameter_32

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	Х	Х	Х

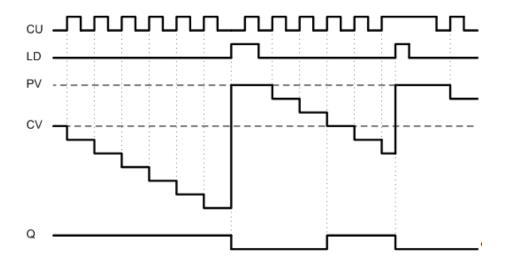
Schreibt einen 16/32 Bit Parameter in das Gerät, wenn **EXECUTE** von 0 auf 1 wechselt (Flanke). Der Parameter wurde geschrieben, wenn **DONE** auf 1 gesetzt ist. Für die Dauer des Lesevorgangs wird der Ausgang **BUSY** 1 auf gesetzt. Im Fehlerfall wird **ERROR** auf 1 gesetzt und die **ERRORID** enthält den Fehlercode. Die Signale **DONE**, **ERROR**, **ERRORID** bleiben solange gesetzt, bis **EXECUTE** wieder auf 0 wechselt. Wechselt das **EXECUTE** Signal auf 0, dann wird der Schreibprozess nicht abgebrochen. Nur das **DONE** Signal bleibt nur für 1 PLC Zyklus gesetzt.

VAR_INPUT			VAR_OUTPU	т			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
EXECUTE	Freigabe	BOOL	DONE	Value ist gültig	BOOL		
PARAMETERNU MBER	Parameternummer	INT	BUSY	Der Schreibvorgang ist aktiv	BOOL		
PARAMETERIND EX	Parameterindex	ndex INT		Lesevorgang ist fehlgeschlagen	BOOL		
VALUE	JE Zu schreibender Wert INT ERROR		ERRORID	Fehlercode	INT		
RAMONLY	Speichere den Wert nur im RAM (ab Version V2.1)						
ERRORID	Erläuterung						
0	unzulässige Parameternu	ımmer					
1	Parameterwert nicht ände	erbar					
2	untere oder obere Wertgi	renze übe	erschritten				
3	fehlerhafter Parametering	dex					
4	kein Array						
5	Unzulässiger Datentyp						
6	Nur Rücksetzbar (es darf nur 0 geschrieben werden)						
7	Beschreibungselement n	Beschreibungselement nicht änderbar					
201	Ungültiges Auftragseleme	ent im zul	letzt empfange	nen Auftrag			
202	Interne Antwortkennung i	nicht abbi	ildbar				

Beispiel in ST:

```
WriteParam16(Execute := TRUE, ParameterNumber := 102, ParameterIndex := 0, Value := 300);
IF WriteParam16.Done THEN
    WriteParam16(Execute := FALSE);
END_IF;
```

10.3.4 Standard


10.3.4.1 CTD Abwärtszähler

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	Х	Х	X	Х

Bei steigender Flanke an **CD** wird der Zähler des Funktionsblockes **CV** um eins verringert, solange CV größer als -32768 ist. Wenn **CV** kleiner oder gleich 0 ist, bleibt der Ausgang **Q** auf TRUE. Über **LD** kann der Zähler **CV** auf den in **PV** gespeicherten Wert gesetzt werden.

BU 0000 de-1017 109

VAR_INPU	VAR_INPUT			TPUT		
Eingang	ngang Erläuterung Typ		Ausgang	Erläuterung	Тур	
CD	Zählereingang	ingang BOOL		TRUE, wenn CV <= 0	BOOL	
LD	Lade Startwert	tartwert BOOL CV		Aktueller Zählerstand	INT	
PV	V Startwert INT					

LD VarBOOL1

ST CTDInst.CD

LD VarBOOL2

ST CTDInst.LD

LD VarINT1 ST CTDInst.PV

CAL CTDInst

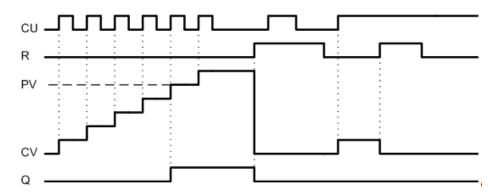
LD CTDInst.Q

ST VarBOOL3

LD CTDInst.CV

ST VarINT2

Beispiel in ST:


```
CTDInst(CD := VarBOOL1, LD := VarBOOL2, PV := VarINT1);
VarBOOL3 := CTDInst.Q;
VarINT2 := CTDInst.CV;
```

10.3.4.2 CTU Aufwärtszähler

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Х	X

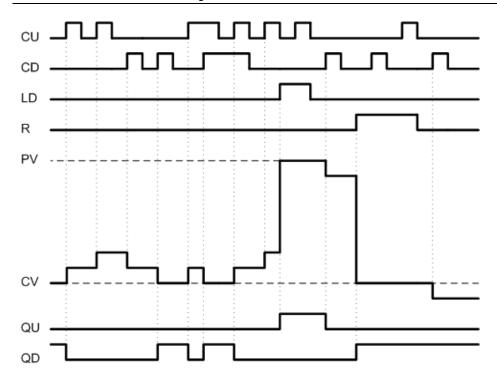
Bei steigender Flanke an **CU** wird der Zähler des Funktionsblockes **CV** um eins erhöht. **CV** kann bis auf den Wert 32767 gezählt werden. Solange **CV** größer oder gleich **PV** ist, bleibt der Ausgang **Q** auf TRUE. Über **R** kann der Zähler **CV** auf den Wert null zurückgesetzt werden.

VAR_INP	VAR_INPUT			PUT		
Eingang	ngang Erläuterung Typ		Ausgang	Erläuterung	Тур	
CU	Zählereingang	BOOL	Q	TRUE, wenn CV >= 0	BOOL	
R	Reset Zählestand	BOOL	cv	Aktueller Zählerstand	INT	
PV	Startwert					

```
LD VarBOOL1
ST CTUInst.CU
LD VarBOOL2
ST CTUInst.R
LD VarINT1
ST CTUInst.PV
CAL CTUInst(CU := VarBOOL1, R := VarBOOL2, PV := VarINT1)
LD CTUInst.Q
ST VarBOOL3
LD CTUInst.CV
ST VarINT2
```

Beispiel in ST:

```
CTUInst(CU := VarBOOL1, R := VarBOOL2, PV := VarINT1);
VarBOOL3 := CTUInst.Q;
VarINT2 := CTUInst.CV;
```


10.3.4.3 CTUD Auf- und Abwärtszähler

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

Bei steigender Flanke an **CU** wird der Zähler CV um eins erhöht, solange CV kleiner als 32767 ist. Bei steigender Flanke an **CD** wird der Zähler **CV** um eins verringert, solange **CV** größer als -32768 ist. Über **R** kann der Zähler **CV** auf den Wert Null gesetzt werden. Über **LD** wird der in **PV** gespeicherte Wert in **CV** kopiert.

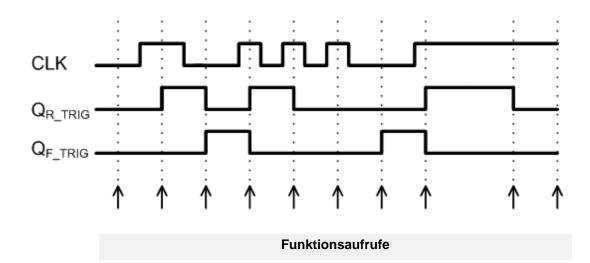
R hat Vorrang gegenüber LD, CU und CV. PV kann jederzeit verändert werden, QU bezieht sich immer auf den aktuell eingestellten Wert.

VAR_INP	UT		VAR_OUTP	PUT			
Eingang	ingang Erläuterung Typ		Ausgang	Erläuterung	Тур		
CU	Aufwärtszählen	BOOL	QU	TRUE, wenn CV >= PV	BOOL		
CD	Abwärtszählen	BOOL	QD	TRUE, wenn CV <= 0	BOOL		
R	Reset Zählerstand	BOOL	cv	Aktueller Zählerstand	INT		
LD	Lade Startwert	BOOL					
PV	Startwert	INT					

- LD VarBOOL1
- ST CTUDInst.CU
- LD VarBOOL3
- ST CTUDInst.R
- LD VarBool4 ST CTUDInst.LD
- LD VarINT1
- ST CTUInst.PV CAL CTUDInst
- LD CTUDInst.QU
- ST VarBOOL5
- LD CTUDInst.QD
- ST VarBOOL5
- LD CTUInst.CV
- ST VarINT2

Beispiel in ST:

CTUDInst(CU:=VarBOOL1, R:=VarBOOL3, LD:=VarBOOL4, PV:=VarINT1); VarBOOL5 := CTUDInst.QU; VarBOOL5 := CTUDInst.QD; VarINT2 := CTUDInst.CV;



10.3.4.4 R_TRIG und F_TRIG

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarke	it X	Х	Х	Х	Х	Х

Beide Funktionen dienen der Flankenerkennung. Wird eine Flanke auf **CLK** erkannt geht **Q** bis zum nächsten Funktionsaufruf auf TRUE, danach wieder auf FALSE. Erst mit einer neuen Flanke kann **Q** wieder für einen Zyklus TRUE werden.

- R_TRIG = steigende Flanke
- F_TRIG = fallende Flanke

VAR_INPUT			VAR_OUTP	AR_OUTPUT		
Eingang	Eingang Erläuterung Typ		Ausgang	Erläuterung	Тур	
CLK	CLK Setzen BOOL		Q	Ausgang	BOOL	

Beispiel in AWL:

LD VarBOOL1 ST RTRIGINST.CLK CAL RTRIGINST LD RTRIGINST.Q ST VarBOOL2

Beispiel in ST:

RTRIGInst(CLK:= VarBOOL1);
VarBOOL2 := RTRIGInst.Q;

1 Information

Die Ausgabe der Funktion ändert sich nur, wenn die Funktion aufgerufen wird. Aus diesem Grund ist es ratsam, die Flankendetektion kontinuierlich mit dem SPS-Zyklus aufzurufen.

10.3.4.5 RS Flip Flop

		SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Ve	erfügbarkeit	X	X	X	X	X	X

Bistabile Funktion, über **S** wird der Ausgang **Q1** gesetzt und über **R1** wieder gelöscht. Liegt an **R1** und **S** zeitgleich ein TRUE an, so ist **R1** dominant.

VAR_INPUT			VAR_OUTP	TPUT		
Eingang	ingang Erläuterung		Ausgang	Erläuterung	Тур	
S	Setzen	BOOL	Q1	Ausgang	BOOL	
R1	Reset	BOOL				

Beispiel in AWL:

LD VarBOOL1 ST RSInst.S LD VarBOOL2 ST RSInst.R1 CAL RSInst LD RSInst.Q1 ST VarBOOL3

Beispiel in ST:

RSInst(S:= VarBOOL1 , R1:=VarBOOL2);
VarBOOL3 := RSInst.Q1;

10.3.4.6 SR Flip Flop

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

Bistabile Funktion, über **S1** wird der Ausgang **Q1** gesetzt und über **R** wieder gelöscht. Liegt an **R1** und **S** zeitgleich ein TRUE an, so ist **S1** dominant.

VAR_INP	VAR_INPUT			VAR_OUTPUT		
Eingang Erläuterung Typ		Ausgang	Erläuterung	Тур		
S 1	Setzen	BOOL	Q1	Ausgang	BOOL	
R	Reset	BOOL				

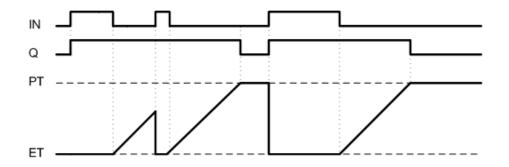
Beispiel in AWL:

LD VarBOOL1 ST SRInst.S1 LD VarBOOL2 ST SRInst.R CAL RSInst

LD SRInst.Q1 ST VarBOOL3

Beispiel in ST:

SRInst(S1:= VarBOOL1 , R:=VarBOOL2);
VarBOOL3 := SRInst.Q1;


10.3.4.7 TOF Ausschaltverzögerung

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	X

Wird IN = TRUE, dann wird Q auf TRUE gesetzt. Geht IN auf FALSE, läuft der Timer hoch. Solange der Timer läuft (ET < PT) bleibt Q auf TRUE gesetzt. Ist (ET = PT) bleibt der Timer stehen, Q wird dann FALSE. Bei einer neuen steigenden Flanke auf IN, wird der Timer ET wieder auf null gesetzt.

Für eine vereinfachte Eingabe können hier Literale benutzt werden, wie z.B.

LD TIME#50s20ms = 50,020 Sekunden
 LD TIME#1d30m = 1 Tag und 30 Minuten

VAR_INP	VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang Erläuterung Typ				
IN	Timer aktiv	BOOL	Q	TRUE ß (ET <pt)<="" th=""><th>BOOL</th></pt>	BOOL		
PT	Zeitdauer	DINT	ET	Aktueller Stand des Timers	DINT		

Beispiel in AWL:

LD VarBOOL1
ST TOFINST.IN
LD DINT#5000
ST TOFINST.PT
CAL TOFINST
LD TOFINST.Q
ST VarBOOL2

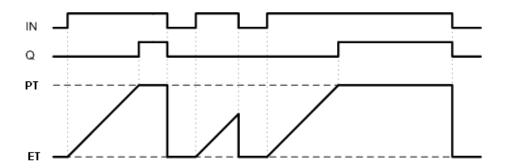
Beispiel in ST:

```
TOFInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TOFInst.Q;
```


Timer ET

Die Zeit ET läuft unabhängig von einem PLC Zyklus. Das Starten des Timers mit IN und das Setzen des Ausgangs Q werden erst mit dem Funktionsaufruf "CAL" ausgeführt. Der Funktionsaufruf findet in einem PLC Zyklus statt, dieser kann aber bei längeren PLC Programmen größer 5 ms sein, sodass zeitlich ein Jitter entstehen kann.

10.3.4.8 TON Einschaltverzögerung


	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

Wird **IN** = TRUE gesetzt, dann läuft der Timer hoch. Wenn **ET** = PT ist, wird **Q** auf TRUE gesetzt und der Timer bleibt stehen. **Q** bleibt solange TRUE wie **IN** auch TRUE ist. Bei einer neuen steigenden Flanke auf **IN** fängt der Timer wieder bei null an zu laufen. **PT** kann verändert werden während der Timer läuft. Die Zeitdauer wird in **PT** in Millisekunden eingegeben. Damit ist eine Zeitverzögerung zwischen 5ms und 24,8 Tagen möglich. Da die Zeitbasis der PLC bei 5ms liegt, ist die minimale Zeitverzögerung auch 5ms.

Für eine vereinfachte Eingabe können hier Literale benutzt werden, wie z.B.

• LD TIME#50s20ms = 50,020 Sekunden

LD TIME#1d30m = 1 Tag und 30 Minuten

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang Erläuterung Typ			
IN	Timer aktiv	BOOL	Q	TRUE ß (IN=TRUE & ET=PT)	BOOL	
PT	Zeitdauer	DINT	ET	Aktueller Stand des Timers	DINT	

Beispiel in AWL:

LD VarBOOL1

ST TONInst.IN

LD DINT#5000 ST TONInst.PT

CAL TONInst

LD TONINSt.Q

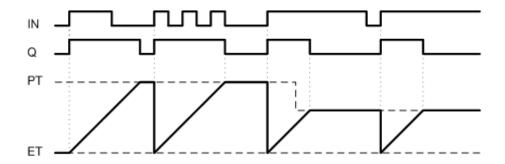
ST VarBOOL2

Beispiel in ST:

TONInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TONInst.Q;

Timer ET

Die Zeit ET läuft unabhängig von einem PLC Zyklus. Das Starten des Timers mit IN und das Setzen des Ausgangs Q werden erst mit dem Funktionsaufruf "CAL" ausgeführt. Der Funktionsaufruf findet in einem PLC Zyklus statt, dieser kann aber bei längeren PLC Programmen größer 5 ms sein, sodass zeitlich ein Jitter entstehen kann.


10.3.4.9 TP Zeitimpuls

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Х	X

Bei einer positiven Flanke an **IN** wird der Timer mit dem Wert 0 gestartet. Der Timer zählt bis auf den in **PT** eingetragenen Wert hoch und bleibt dann stehen. Dieser Vorgang ist nicht unterbrechbar! PT kann während des Hochzählens verändert werden. Der Ausgang **Q** ist TRUE, solange der Timer **ET** kleiner als **PT** ist. Wenn **ET = PT** ist und eine steigende Flanke an **IN** erkannt wird, wird der Timer wieder bei 0 gestartet.

Für eine vereinfachte Eingabe können hier Literale benutzt werden, wie z.B.

LD TIME#50s20ms = 50,020 Sekunden
 LD TIME#1d30m = 1 Tag und 30 Minuten

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang Erläuterung Ty			
IN	Timer aktiv	BOOL	Q	TRUE ß (ET <pt)<="" th=""><th>BOOL</th></pt>	BOOL	
PT	Zeitdauer	DINT	ET	Aktueller Stand des Timers	DINT	

Beispiel in AWL:

LD VarBOOL1
ST TPInst.IN
LD DINT#5000
ST TPInst.PT
CAL TPInst
LD TPInst.Q
ST VarBOOL2

Beispiel in ST:

TPInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TPInst.Q;

Timer ET

Die Zeit ET läuft unabhängig von einem PLC Zyklus. Das Starten des Timers mit IN und das Setzen des Ausgangs Q werden erst mit dem Funktionsaufruf "CAL" ausgeführt. Der Funktionsaufruf findet in einem PLC Zyklus statt, dieser kann aber bei längeren PLC Programmen größer 5 ms sein, sodass zeitlich ein Jitter entstehen kann.

10.3.5 Zugriff auf Speicherbereiche des Frequenzumrichters

Wenn es nötig ist, größere Mengen an Daten zwischen zu speichern, an andere Geräte zu übergeben oder von anderen Geräten zu empfangen, dann ist die Verwendung der Bausteine FB_WriteTrace und FB_ReadTrace angezeigt.

10.3.5.1 FB_ReadTrace

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	Х	

Mit Hilfe dieses FB können verschiedene Speicherbereiche des FU direkt ausgelesen werden.

Wird vom FB eine positive Flanke am **ENABLE** Eingang erkannt, dann werden alle am Eingang anliegenden Parameter übernommen. Durch **STARTINDEX** und **MEMORY** wird die auszulesende Speicherstelle gekennzeichnet. Bei einem erfolgreichen Lesevorgang geht der Ausgang **VALID** auf 1 und in **VALUE** steht der ausgelesene Wert.

Wird der FB jetzt mehrfach aufgerufen und der **ENABLE** Eingang bleibt auf 1, dann wird bei jedem Aufruf die auszulesende Speicheradresse um 1 erhöht, der Inhalt der neue Speicherzelle sofort in den Ausgang **VALUE** kopiert.

Der aktuelle Speicherindex für den nächsten Zugriff kann unter dem Ausgang **ACTINDEX** ausgelesen werden. Wird das Speicherende erreicht, dann geht der Ausgang **READY** auf 1 und der Lesevorgang wird gestoppt.

Es können Werte im INT oder DINT Format gelesen werden. Bei INT Werten, ist vom Ausgang **VALUE** nur der Low Teil auszuwerten. Die Zuordnung erfolgt über den Eingang **SIZE**, eine 0 steht für INT und eine 1 für DINT Werte.

Die Zuordnung der Speicherbereiche erfolgt über den Eingang MEMORY:

MEMORY = 1 à P613[0-251] entspricht 504 INT oder 252 DINT Werten

MEMORY = 0 à P900[0-247] bis P906[0-111] entspricht 3200 INT oder 1600 DINT Werten

Der FB kann nicht durch andere Blöcke unterbrochen werden.

Mit einer negativen Flanke an ENABLE werden alle Ausgänge auf 0 gesetzt und die Funktion des FB beendet.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Ausgang Erläuterung T		
ENABLE	Ausführen	BOOL	VALID	Lesevorgang erfolgreich	BOOL	
SIZE	Speicherformat	BOOL	READY	Der gesamte Speicher ist ausgelesen	BOOL	
MEMORY	Auswahl Speicherbereich	BYTE	ERROR	der FB hat einen Fehler	BOOL	
STARTINDEX	Zeigt auf die zu beschreibende Speicherzelle	INT	ERRORID	Fehlercode	INT	
			ACTINDEX	Aktueller Speicherindex, aus dem im nächsten Zyklus gelesen wird	INT	
			VALUE	Ausgelesener Wert	DINT	
ERRORID	Erläuterung					
0	Kein Fehler					
1A00h	Wertebereich STARTINDEX wurde überschritten					
1A01h	Wertebereich MEMORY	wurde üb	erschritten			

10.3.5.2 FB_WriteTrace

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	

Über diesen FB können einzelne oder auch größere Mengen an Werten im FU zwischengespeichert werden. Das Speichern der Werte erfolgt nicht dauerhaft, d.h. nach einem Neustart des FU gehen die Werte verloren.

Wird vom FB eine positive Flanke am **ENABLE** Eingang erkannt, dann werden alle am Eingang anliegenden Parameter übernommen. Der in VALUE stehende Wert wird auf die durch **STARTINDEX** und **MEMORY** gekennzeichnete Speicherstelle geschrieben. Bei einem erfolgreichen Schreibvorgang geht der Ausgang VALID auf 1.

Wird der FB jetzt mehrfach aufgerufen und der **ENABLE** Eingang bleibt auf 1, dann wird bei jedem FB Aufruf der Eingang **VALUE** gelesen und gespeichert, sowie die Speicheradresse um 1 erhöht. Der aktuelle Speicherindex für den nächsten Zugriff kann unter dem Ausgang **ACTINDEX** ausgelesen werden. Wird das Speicherende erreicht, dann geht der Ausgang FULL auf 1 und der Speichervorgang wird gestoppt. Ist jedoch der Eingang **OVERWRITE** auf 1 gesetzt ist, so wird der Speicherindex wieder auf den **STARTINDEX** gesetzt und es werden die vorher gespeicherten Werte überschrieben.

Es können Werte im INT oder DINT Format gespeichert werden. Bei INT Werten, wird vom Eingang **VALUE** nur der Low Teil ausgewertet. Die Zuordnung erfolgt über den Eingang **SIZE**, eine 0 steht für INT und eine 1 für DINT Werte.

Die Zuordnung der Speicherbereiche erfolgt über den Eingang MEMORY:

MEMORY = 1 à P613[0-251] entspricht 504 INT oder 252 DINT Werten

MEMORY = 0 à P900[0-247] bis P906[0-111] entspricht 3200 INT oder 1600 DINT Werten

Der FB kann nicht durch andere Blöcke unterbrochen werden.

Mit einer negativen Flanke an **ENABLE** werden alle Ausgänge auf 0 gesetzt und die Funktion des FB beendet.

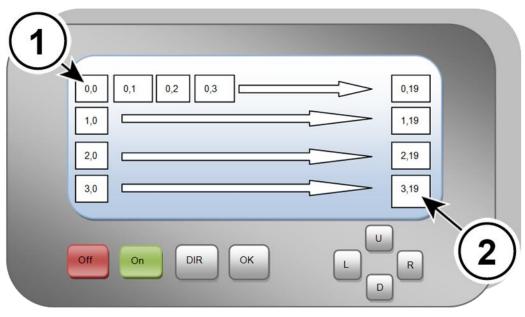
VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Ausgang Erläuterung		
ENABLE	Ausführen	BOOL	VALID	Schreibvorgang erfolgreich	BOOL	
SIZE	Speicherformat	BOOL	FULL	Komplette Speicher ist voll	BOOL	
OVERWRITE	Speicher überschreibar	BOOL	ERROR	der FB hat einen Fehler	BOOL	
MEMORY	Auswahl Speicherbereich	BYTE	ERRORID	Fehlercode	INT	
STARTINDEX	Zeigt auf die zu beschreibende Speicherzelle	INT	ACTINDEX	Aktueller Speicherindex, auf dem im nächsten Zyklus gespeichert wird	DINT	
VALUE	Zu speichernder Wert	DINT				
ERRORID	Erläuterung	•				
0	Kein Fehler					
1A00h	Wertebereich STARTINE	Wertebereich STARTINDEX wurde überschritten				
1A01h	Wertebereich MEMORY	wurde üb	erschritten			

1 Information

Beachte! Der Speicherbereich in der Einstellung MEMORY = 0 wird auch von der Scope Funktion genutzt. Ein Verwenden der Scope Funktion überschreibt die gespeicherten Werte!

10.3.6 Visualisierung ParameterBox

In der ParameterBox kann der komplette Displayinhalt für eigene Informationsdarstellungen benutzt werden. Dazu muss die ParameterBox in den Visualisierungsmode geschaltet werden. Dies ist ab der Firmwareversion V4.3 der ParameterBox (Parameter P1308) möglich und geschieht wie folgt:


- Im Menüpunkt "Anzeige" den Parameter P1003 auf "PLC-Anzeige" einstellen
- Über die rechte oder linke Pfeiltaste auf die Betriebswertanzeige wechseln
- PLC Anzeige ist jetzt in der P-Box aktiv und bleibt dies auch dauerhaft

Im Visualisierungsmode der P-Box kann über die zwei nachfolgend erläuterten FB der Displayinhalt

beschrieben werden. Vorab muss jedoch im PLC Konfigurationsdialog (Schaltfläche), der Punkt "Parameterbox Funktionsbausteine zulassen" aktiviert sein. Über den Prozesswert "Parameterbox_key_state" kann zusätzlich der Tastaturzustand der Box abgefragt werden. Damit

können Eingaben in das PLC Programm realisiert werden. Der nachfolgenden Abbildung kann der Displayaufbau und die Position der auszulesenden Tasten für die ParameterBox entnommen werden.

1	Erstes Zeichen	$(0,0 \rightarrow Zeile = 0, Spalte = 0)$
2	Letztes Zeichen	(3,19 → Zeile = 3 , Spalte = 19)

10.3.6.1 Überblick Visualisierung

Funktionsbaustein	Erläuterung
FB_STRINGToPBox	Kopiert einen String in die P-Box
FB_DINTToPBox	Kopiert einen DINT Wert zur P-Box

10.3.6.2 FB DINTTOPBOX

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

Dieser Funktionsbaustein konvertiert einen DINT Wert in einen ASCII String und kopiert diesen in die ParameterBox. Die Ausgabe kann im dezimalen, binären oder hexadezimalen Format erfolgen, die Selektion wird über MODE durchgeführt. Über ROW und COLUMN wird die Startposition des Strings im P-Box Display gesetzt. Der Parameter LENGTH übergibt die Länge des Strings in Zeichen. Im MODE Dezimal positioniert der Parameter POINT ein Komma in die darzustellende Zahl. In POINT wird angegeben wie viele Zeichen rechts vom Komma stehen. Bei der Einstellung 0 ist die Funktion POINT ausgeschaltet. Sollte die Zahl mehr Zeichen enthalten als es die Länge zulässt und ist außerdem kein Komma gesetzt, so wird der Überlauf durch das Zeichen "#" angezeigt. Befindet sich ein Komma in der Zahl, so können bei Bedarf alle Zahlen hinter dem Komma entfallen. Im MODE hexadezimal und binär werden immer die niederwertigsten Bits dargestellt, wenn die eingestellte Länge zu kurz ist. Solange ENABLE auf 1 gesetzt ist, werden alle Änderungen an den Eingängen sofort übernommen. Geht VALID auf 1, dann ist der String korrekt übertragen worden. Im Fehlerfall wird ERROR auf 1 gesetzt. VALID ist in diesem Fall 0. In der ERRORID ist dann der entsprechende

BU 0000 de-1017 121

Fehlercode gültig. Bei einer negativen Flanke an **ENABLE** werden **VALID**, **ERROR** und **ERRORID** zurückgesetzt.

Beispiele:

Einstellung	Darzustellende Zahl	P-Box Anzeige		
Length = 5	100.15	10015		
Point = 0	12345	12345		
Length = 5	10015			
Point = 0	-12345	#####		
Length = 10	100150500	100150 500		
Point = 3	123456789	123456,789		
Length = 8	400450500	1001505		
Point = 3	123456789	123456,7		

VAR_INPUT			VAR_OUTPU	Т			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
ENABLE	Übergabe des Strings	BOOL	VALID	String übergeben	BOOL		
MODE	Darstellungsformat 0 = Dezimal 1 = Binäre 2 = Hexadezimal Wertebereich = 0 bis 2	ВҮТЕ	ERROR	Fehler im FB	BOOL		
ROW	Zeile des Display Wertebereich = 0 bis 3	BYTE	ERRORID	Fehlercode	INT		
COLUMN	Spalte des Display Wertebereich = 0 bis 19	BYTE					
POINT	Position des Komma Wertebereich = 0 bis 10 0 = Funktion ist ausgeschaltet	BYTE					
LENGTH	Ausgabelänge Wertebereich = 1 bis 11	BYTE					
VALUE	Auszugebende Zahl	DINT					
ERRORID	Erläuterung				•		
0	Kein Fehler						
1500h	String überschreibt den S	Speicherb	ereich des P-B	ox Arrays			
1501h	beim Eingang LINE wurd	e der We	rtebereich übei	rschritten			
1502h	beim Eingang ROW wurd	beim Eingang ROW wurde der Wertebereich überschritten					
1504h	beim Eingang POINT wu	rde der W	/ertebereich üb	erschritten			
1505h	beim Eingang LENGTH v	vurde der	Wertebereich	überschritten			
1506h	beim Eingang MODE wu	rde der W	/ertebereich üb	erschritten			

BU 0000 de-1017 123

Beispiel in ST:

```
(* Initialisierung *)
if FirstTime then
  StringToPBox.ROW := 1;
  StringToPBox.Column := 16;
  FirstTime := False;
end if;
(* Aktuelle Position abfragen *)
ActPos(Enable := TRUE);
if ActPos.Valid then
  (* Position in der PBox anzeigen (PBox P1003 = PLC Anzeige ) *)
  DintToPBox.Value := ActPos.Position;
  DintToPBox.Column := 9;
  DintToPBox.LENGTH := 10;
  DintToPBox(Enable := True);
end if;
(* Gerät über DIG1 ein oder ausschalten *)
Power(Enable := 5 State digital input.0);
if OldState <> Power.Status then
  OldState := Power.Status;
  (* Ist das Gerät eingeschaltet? *)
  if Power.Status then
    StringToPBox(Enable := False, Text := TextOn);
    StringToPBox(Enable := False, Text := TextOff);
  end if;
  StringToPBox(Enable := TRUE);
else
  StringToPBox;
end if;
```

10.3.6.3 FB_STRINGToPBOX

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	Х	X	X	X

Dieser Funktionsbaustein kopiert einen String (Zeichenkette) in das P-Box Speicherarray. Über ROW und COLUMN wird die Startposition des Strings im P-Box Display gesetzt. Der Parameter TEXT übergibt den gewünschten String an den Funktionsbaustein, der Stringname kann aus der Variablentabelle entnommen werden. Solange ENABLE auf 1 ist, werden alle Änderungen an den Eingängen sofort übernommen. Beim gesetzten CLEAR Eingang wird der gesamte Display Inhalt mit Leerzeichen überschrieben, bevor der selektierte String geschrieben wird. Geht VALID auf 1, dann ist der String korrekt übertragen worden. Im Fehlerfall wird ERROR auf 1 gesetzt. VALID ist in diesem Fall 0. In der ERRORID ist dann der entsprechende Fehlercode gültig. Bei einer negativen Flanke an ENABLE werden VALID, ERROR und ERRORID zurückgesetzt.

VAR_INPUT	Г		VAR_OUTPU	т			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
ENABLE	Übergabe des String	BOOL	VALID	String übergeben	BOOL		
CLEAR	Display löschen	BOOL	ERROR	Fehler im FB	BOOL		
ROW	Zeile des Display Wertebereich = 0 bis 3	BYTE	ERRORID	Fehlercode	INT		
COLUMN	Spalte des Display Wertebereich = 0 bis 19	BYTE					
TEXT	anzuzeigender Text	STRING					
ERRORID	Erläuterung						
0	Kein Fehler						
1500h	String überschreibt den Spe	eicherbereic	h des P-Box A	rrays			
1501h	beim Eingang ROW wurde	der Werteb	ereich übersch	ritten			
1502h	beim Eingang COLUMN wu	ırde der We	rtebereich übe	rschritten			
1503h	Die gewählte String Numme	Die gewählte String Nummer existiert nicht					
1506h	In der PLC Konfiguration ist aktiviert.	t die Option	"Parameterbox	r Funktionsbausteine zulassen" nich	t		

Beispiel in ST:

```
(* Initialisierung *)
if FirstTime then
  StringToPBox.ROW := 1;
  StringToPBox.Column := 16;
 FirstTime := False;
end_if;
(* Aktuelle Position abfragen *)
ActPos(Enable := TRUE);
if ActPos.Valid then
  (* Position in der PBox anzeigen (PBox P1003 = PLC Anzeige ) *)
  DintToPBox.Value := ActPos.Position;
  DintToPBox.Column := 9;
  DintToPBox.LENGTH := 10;
 DintToPBox(Enable := True);
end if;
(* Gerät über DIG1 ein oder ausschalten *)
Power (Enable := 5 State digital input.0);
if OldState <> Power.Status then
  OldState := Power.Status;
  (* Ist das Gerät eingeschaltet? *)
  if Power.Status then
    StringToPBox(Enable := False, Text := TextOn);
    StringToPBox(Enable := False, Text := TextOff);
  end_if;
  StringToPBox(Enable := TRUE);
else
  StringToPBox;
end_if;
```

BU 0000 de-1017 125

10.3.7 FB_Capture (Erfassen schneller Ereignisse)

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	Х	X		

Die Zykluszeit der PLC beträgt 5ms, dieser Zyklus ist zur Erfassung sehr schneller externer Ereignisse mitunter zu groß. Über der FB Capture ist es möglich auf Flanken an den FU Eingängen bestimmte physikalische Größen zu erfassen. Die Überwachung der Eingänge erfolgt in einem 1ms Zyklus. Die so gespeicherten Werte können später von der PLC ausgelesen werden.

Bei einer positiven Flanke an **EXECUTE** werden alle Eingänge eingelesen und die Capture Funktion scharf geschaltet. Über den Eingang **INPUT** wird der zu überwachende FU Eingang selektiert. Über **EDGE** werden die Art der Flanke und das Verhalten des Bausteins ausgewählt.

- **EDGE** = 0 Mit der ersten positiven Flanke wird der selektierte Wert unter **OUTPUT1** gespeichert und **DONE1** auf 1 gesetzt. Die nächste positive Flanke speichert unter **OUTPUT2** und **DONE2** wird auf 1 gesetzt. Der FB wird dann deaktiviert.
- **EDGE** = 1 Verhalten wie unter **EDGE** = 0, mit dem Unterschied das die negative Flanke auslöst.
- EDGE = 2 Mit der ersten positiven Flanke wird der selektierte Wert unter OUTPUT1 gespeichert und DONE1 auf 1 gesetzt. Die nächste negative Flanke speichert unter OUTPUT2 und DONE2 wird auf 1 gesetzt. Der FB wird dann deaktiviert.
- **EDGE** = 3 Verhalten wie unter **EDGE** = 2, mit dem Unterschied das zuerst die negative und dann die positive Flanke auslöst.

Wird der Eingang **CONTINUOUS** auf 1 gesetzt, dann ist für **EDGE** nur noch die Einstellung 0 und 1 relevant. Der FB läuft kontinuierlich weiter und speichert das letzte auslösende Ereignis immer unter **OUTPUT1** ab. **DONE1** bleibt ab dem ersten Ereignis aktiv. **DONE2** und **OUTPUT2** werden nicht verwendet.

Der **BUSY** Ausgang bleibt solange aktiv bis beide Capture Ereignisse (**DONE1** und **DONE2**) eingetreten sind.

Die Funktion des Bausteins kann jederzeit durch eine negative Flanke an **EXECUTE** beendet werden. Alle Ausgänge behalten dabei ihre Werte. Mit einer positiven Flanke an **EXECUTE** werden zuerst alle Ausgänge gelöscht und dann die Funktion des Bausteins gestartet.

VAR_INPUT			VAR_OUTP	ит			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
EXECUTE	Ausführen	BOOL	DONE1	Wert in OUTPUT1 gültig	BOOL		
CONTINUOUS	Einmalige Ausführung o. Dauerbetrieb	BOOL	DONE2	Wert in OUTPUT2 gültig	BOOL		
INPUT	SK54xE Zu überwachender Eingang 0 = Eingang 1 7 = Eingang 8 SK52xE, SK53xE, SK2xxE, SK2xx-EFDS Zu überwachender Eingang 0 = Eingang 1 3 = Eingang 4	ВУТЕ	BUSY	FB wartet noch auf Capture Ereignisse	BOOL		
EDGE	Auslösende Flanke	BYTE	ERROR	der FB hat einen Fehler	BOOL		
SOURCE	Zu speichernde Größe 0 = Position in Umdrehungen 1 = Istfrequenz 2 = Moment	BYTE	ERRORID	Fehlercode	INT		
			OUTPUT1	Wert für 1. Capture Ereignisses	DINT		
			OUTPUT2	Wert für 2. Capture Ereignisses	DINT		
ERRORID	Erläuterung						
0	Kein Fehler						
1900h	Wertebereich INPUT wurde überschritten						
1901h	Wertebereich EDGE wur	Wertebereich EDGE wurde überschritten					
1902h	Wertebereich SOURCE	wurde üb	erschritten				
1903h	Es sind mehr als zwei Ir	nstanzen a	aktiv				

Beispiel in ST:

```
Power(ENABLE := TRUE);
IF Power.STATUS THEN
    Move(EXECUTE := TRUE, POSITION := Pos, VELOCITY := 16#2000);
    (* Der Capture FB wartet am DIG1 auf ein High Signal. Wird das erkannt, speichert der FB die aktuelle Position. Mit Hilfe der Eigenschaft "OUTPUT1" kann der Wert abgefragt werden. *)
    Capture(EXECUTE := TRUE, INPUT := 0);

IF Capture.DONE1 THEN
    Pos := Capture.OUTPUT1;
    Move(EXECUTE := FALSE);
    END_IF;
END_IF;
```


Von diesem FB können mehrere Instanzen im PLC Programm existieren. Aber es dürfen zur selben Zeit nur zwei Instanzen aktiv sein!

10.3.8 FB_DinCounter

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	ab V2.3	ab V3.1	ab V2.1	X	ab V1.1	

Dieser FB dient zum Zählen von Impulsen über die Digitaleingänge. Es werden alle Flanken (Low – High und High – Low) gezählt. Die minimale Impulsbreite ist 250µs.

Der FB wird über ENABLE aktiviert. Mit der positiven Flanke werden die Eingänge PV, UD, DIN und MODE übernommen und alle Ausgänge gelöscht.

UD definiert die Zählrichtung

- 0 = größer Zählen
- 1 = kleiner Zählen

In PV kann ein Zählerwert eingetragen werden. Je nach setzen des MODE Eingangs wirkt sich dies verschieden aus.

MODE

- 0 = Überlauf, der Zähler wird als Dauerzähler betrieben. Er kann in positiver und negativer Richtung überlaufen. Beim Start der Funktion wird CV = PV gesetzt. In diesem Mode bleibt BUSY immer 1 und Q immer 0.
- 1 = ohne Überlauf
 - Vorwärtszählen à CV startet bei 0, BUSY = 1, und läuft bis CV=>PV. Dann geht BUSY auf 0 und Q auf 1. Der Zählvorgang stoppt.
 - Rückwärtszählen à CV startet mit PV und läuft bis CV<=0. Während dieser Zeit ist BUSY = 1 und geht auf 0 wenn das Zählende erreicht ist. Im Gegenzug geht Q auf 1.
 - Neustart des Zählers wird über einen erneute Flanke am ENABLE Eingang erreicht

DIN definiert den Messeingang. Die Anzahl der Eingänge hängt vom jeweiligen FU ab.

- Eingang 1 = 0
- Eingang 2 = 1

usw.

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang Erläuterung		Тур		
ENABLE	Freigabe	BOOL	Q	Zählung beendet	BOOL		
UD	Zählrichtung	BOOL	BUSY	Zähler läuft	BOOL		
	0 = größer Zählen 1 = kleiner Zählen						
PV	Zählerwert	INT	ERROR	der FB hat einen Fehler	BOOL		
MODE	Modus	BYTE	ERRORID	Fehlercode	INT		
DIN	Messeingang	BYTE	cv	Zählerwert	INT		
			CF	Zählfrequenz (Auflösung 0,1)	INT		
ERRORID	Erläuterung						
0	Kein Fehler						
0x1E00	Digitaler Eingang wird be	Digitaler Eingang wird bereits vom anderen Zähler verwendet					
0x1E01	Digitaler Eingang existier	t nicht					
0x1E02	Wertebereich MODE übe	rschritter	1				

10.3.9 FB_FunctionCurve

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	Χ	Χ	X	

Der Funktionsbaustein stellt eine Kennfeldsteuerung dar. Es können dem Funktionsblock definierte Punkte übergeben werden, durch die er eine Funktion emuliert. Der Ausgang verhält sich dann entsprechend des hinterlegten Kennfelds. Zwischen den einzelnen Stützpunkten wird linear Interpoliert. Die Stützstellen werden mit X und Y-Werten definiert. Die X-Werte sind dabei immer vom Typ INT, die Y-Werte können alle entweder vom Typ INT oder DINT sein, je nach Größe der größten Stützstelle. Wird DINT verwendet verbraucht dies auch mehr Speicherplatz. Die Stützstellen werden im Variablenfenster in der Spalte "Init-Wert" eingetragen. Wird am Eingang ENABLE ein TRUE erkannt wurde, wird anhand des Eingangswerts INVALUE der entsprechende Ausgangswert OUTVALUE berechnet. VALID signalisiert mit einem TRUE, dass der Ausgangwert OUTVALUE gültig ist. Solange VALID FALSE ist, hat der Ausgang OUTVALUE den Wert 0. Überschreitet der Eingangswert INVALUE das obere oder untere Ende des Kennfeldes, bleibt der erste oder letzte Ausgangswert des Kennfeldes am Ausgang stehen, solange bis sich INVALUE wieder im Bereich des Kennfeldes befindet. Bei Über- oder Unterschreitung des Kennfeldes wird der entsprechende Ausgang MINLIMIT oder MAXLIMIT auf TRUE gesetzt. ERROR wird TRUE, wenn die Abszissenwerte (X-Werte) des Kennfeldes nicht fortlaufen größer werden, oder keine Tabelle initialisiert wird. Dabei wird der entsprechende Fehler auch über ERRORID ausgegeben und der Ausgangswert wird 0. Der Fehler wird zurückgesetzt, wenn **ENABLE** = FALSE wird.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Ausgang Erläuterung		
ENABLE	Ausführen	BOOL	VALID	Ausgangswert ist gültig	BOOL	
INVALUE	Eingangswert (x)	INT	ERROR	Fehler im FB	BOOL	
			ERRORID	Fehlercode	INT	
			MAXLIMIT	Maximales Limit erreicht	BOOL	
			MINLIMIT	Minimales Limit erreicht	BOOL	
			OUTVALUE	Ausgangswert (y)	DINT	
ERRORID	Erläuterung					
0	Kein Fehler					
1400h	Abszissenwerte (X-Werte	Abszissenwerte (X-Werte) des Kennfeldes nicht immer steigend				
1401h	Kein Kennfeld initialisiert					

10.3.10 FB_PIDT1

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	X	X	Х	Χ	X

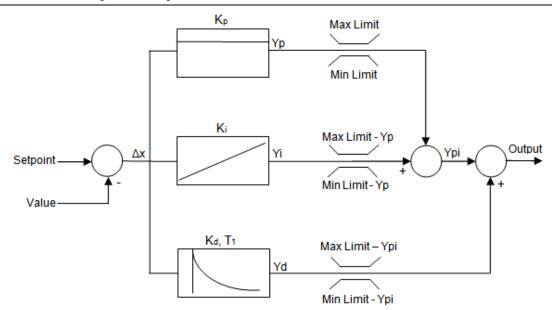
Der P-I-DT1 stellt einen frei parametrierbaren diskreten Regler dar. Werden einzelne Anteile nicht benötigt, sowie der P, der I oder der DT1 Anteil, wird dessen Parameter mit 0 beschrieben. Der T1 Anteil arbeitet nur mit dem D Anteil zusammen. Es lässt sich also kein PT1 Regler parametrieren. Auf Grund von interner Speicherbegrenzung sind die Regelungsparameter auf folgende Bereiche begrenzt:

Zulässiger Wertebereich für Regelungsparameter									
Parameter	Wertebereich	Skalierung	resultierender Wertebereich						
P (Kp)	0 – 32767	1/100	0,00 – 32,767						
I (Ki)	0 – 10240	1/100	0,00 - 10,240						
D (Kd)	0 – 32767	1/1000	0,000 – 3,2767						
T1 (ms)	0 – 32767	1/1000	0,000 – 3,2767						
Max	-32768 – 32767								
Min	-32768 – 32767								

Wenn der Eingang **ENABLE** auf TRUE gesetzt wird, beginnt der Regler zu rechnen. Die Regelungsparameter werden nur bei der steigenden Flanke von **ENABLE** übernommen. Während

ENABLE auf TRUE ist, bleibt ein Verändern der Reglungsparameter wirkungslos. Wird **ENABLE** auf FALSE gesetzt, bleibt der Ausgang auf dem letzten Wert stehen.

Das Ausgangsbit **VALID** wird gesetzt, solange sich der Ausgangswert Q innerhalb der Grenzen Min und Max bewegt und der Eingang **ENABLE** auf TRUE steht.


ERROR wird gesetzt, sobald ein Fehler aufgetreten ist. Das Bit **VALID** ist dann FALSE und die Fehlerursache ist über **ERRORID** (siehe Tabelle unten) zu erkennen.

Wird das Bit **RESET** auf TRUE gesetzt, werden der Integrator- und der Differenziatorinhalt auf 0 gesetzt. Ist der Eingang **ENABLE** auf FALSE, wird auch der Ausgang **OUTPUT** auf 0 gesetzt. Ist der Eingang **ENABLE** auf TRUE gesetzt, wirkt nur der P-Anteil auf den Ausgang **OUTPUT**.

Überschreitet der Ausgangswert **OUTPUT** die maximalen oder minimalen Ausgangswerte, wird das entsprechende Bit **MAXLIMIT** bzw. **MINLIMIT** gesetzt und das Bit **VALID** wird auf FALSE gesetzt.

1 Information

Kann das gesamte Programm nicht innerhalb von einem PLC Zyklus abgearbeitet werden, rechnet der Regler den Ausgangswert ein zweites Mal mit den alten Abtastwerten. Dadurch wird eine konstante Abtastrate erreicht. Aus diesem Grund ist es notwendig, dass der CAL Befehl für den PIDT1 Regler in jedem PLC Zyklus und nur am Ende des PLC Programms ausgeführt wird!

VAR_INPUT			VAR_OUTPU	JT	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Ausführen	BOOL	VALID	Ausgangswert ist gültig	BOOL
RESET	Ausgangswerte zurücksetzen	BOOL	ERROR	Fehler im FB	BOOL
Р	P-Anteil (Kp)	INT	ERRORID	Fehlercode	INT
I	I-Anteil (Ki)	INT	MAXLIMIT	Maximales Limit erreicht	BOOL
D	D-Anteil (Kd)	INT	MINLIMIT	Minimales Limit erreicht	BOOL
T1	T1-Anteil in ms	INT	OUTPUT	Ausgangswert	INT
MAX	Maximaler Ausgangswert	INT			
MIN	Minimaler Ausgangswert	INT			
SETPOINT	Sollwert	INT			
VALUE	Istwert	INT			
ERRORID	Erläuterung				
0	Kein Fehler				
1600h	P-Anteil nicht im Wertebere	eich			
1601h	I-Anteil nicht im Werteberei	ch			
1602h	D-Anteil nicht im Wertebere	eich			
1603h	T1-Anteil nicht im Werteber	reich			

10.3.11 FB_ResetPostion

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	ab V2.3	ab V3.1	ab V2.1	X	ab V1.2	

Bei einer Flanke auf den Eingang **EXECUTE**, wird die aktuelle Position auf den in Position eingetragenen Wert gesetzt. Bei Absolutwertgebern kann die aktuelle Position nur auf 0 zurückgesetzt werden. Der Wert in Position wird nicht verwendet.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
EXECUTE	Ausführen	BOOL				
Position	Position	DINT				

10.3.12 FB_Weigh

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	ab V2.3	ab V3.1	ab V2.1	X	ab V1.2	

Dieser Baustein dient zur Ermittlung des durchschnittlichen Drehmoments während einer Fahrt mit konstanter Drehzahl. Aus diesem Wert können dann z.B. physikalische Größen wie das bewegte Gewicht ermittelt werden.

Über eine positive Flanke am **EXECUTE** Eingang wird der FB gestartet. Mit der Flanke werden alle Eingänge am FB übernommen. Der FU verfährt mit der unter **SPEED** gesetzten Drehzahl. Nach Ablauf der unter **STARTTIME** gesetzten Zeit wird mit der Messung begonnen. Die Messdauer wird unter **MEASURETIME** definiert. Nach Ablauf der Messzeit stoppt der FU. Wenn der Eingang **REVERSE** = 1 ist, dann startet der Messvorgang erneut jedoch mit negierter Drehzahl. Ansonsten ist die Messung beendet, der Ausgang **DONE** geht auf 1 und in VALUE steht das Messergebnis.

Solange der Messvorgang läuft ist BUSY aktiv.

Die Skalierung des Messergebnis **VALUE** ist 1 = 0,01% vom Nenndrehmoment des Motors.

Der Aufruf eines anderen Motion FB stoppt die Messfunktion und der Ausgang ABORT geht auf 1.

Alle Ausgänge des FB werden mit einer neuen positiven Flanke an EXECUTE resetet.

VAR_INPUT			VAR_OUTE	PUT	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
EXECUTE	Ausführen	BOOL	DONE	Messung beendet	BOOL
REVERSE	Drehrichtungswechsel	BOOL	BUSY	Messung läuft	BOOL
STARTTIME	Zeit bis Meaabeginn in ms	INT	ABORT	Messung abgebrochen	BOOL
MEASURETIME	Messzeit in ms	INT	ERROR	der FB hat einen Fehler	BOOL
SPEED	Messgeschwindigkeit in % (normiert auf die Maximalfrequenz, 16#4000 entspricht 100%)	INT	ERRORID	Fehlercode	INT
			VALUE	Messergebnis	INT
ERRORID	Erläuterung	<u>'</u>			
0	Kein Fehler				
0x1000	FU nicht eingeschaltet				
0x1101	Sollfrequenz nicht als Sollwe	rt parame	etriert (P553)		
0x1C00	Wertebereich STARTTIME w	vurde übe	erschritten		
0x1C01	Wertebereich MEASURETIN	1E wurde	überschritter	า	
0x1C02	Die Toleranz der Messwerte	zueinand	der, ist größer	r als 1/8	

Beispiel in ST:

```
(* Gerät freigeben *)
Power(Enable := TRUE);
(* Ist das Gerät freigegeben? *)
if Power.Status then
  (* Startezeit festlegen 2000 ms *)
  Weigh.STARTTIME := 2000;
  (* Messzeit festlegen 1000 ms *)
 Weigh.MEASURETIME := 1000;
  (* Geschwindigkeit festlegen 25% der Maximalgeschwindigkeit *)
  Weigh.SPEED := 16#1000;
end if;
Weigh(EXECUTE := Power.Status);
(* Wurde das Wiegen beendet? *)
if Weigh.done then
 Value := Weigh.Value;
end_if;
```

Information

Von diesem FB ist nur eine Instance im PLC Programm zulässig!

10.4 Operatoren

10.4.1 Arithmetische Operatoren

1 Information

Einzelne der folgenden Operatoren können auch weiterführende Befehle beinhalten. Diese sind in Klammern hinter den Operator zu setzen. Dabei ist zu beachten, dass hinter der eröffnenden Klammer ein Leerzeichen stehen muss. Die schließende Klammer ist auf eine separate Programmzeile zu setzen.

```
LD Var1
ADD( Var2
SUB Var3
)
```

10.4.1.1 ABS

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp			Х	Х

Bildet aus dem Akku den absoluten Betrag.

Beispiel in AWL:

```
LD -10 (* Lädt den Wert -10 *) ABS (* Akku = 10 *) ST Value1 (* Speichert den Wert 10 in Value1 ab *)
```

Beispiel in ST:

```
\label{eq:Value1} \textit{Value1} := \textit{ABS(-10);} \ (* \textit{Das Ergebnis ist } 10 \ *)
```


Datentyp

10.4.1.2 ADD und ADD(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	X	X
	BOOL BYTE	INT DINT				

Addiert vorzeichenrichtig Variablen und Konstanten miteinander. Der erste Wert zur Addition befindet sich im Akku und der zweite wird mit dem ADD Befehl geladen oder er befindet sich innerhalb der Klammer. Es können auch mehrere Variablen oder Konstanten an den ADD Befehl angefügt werden. Bei der Klammer Addition wird der Akku mit dem Ergebnis des Klammerausdrucks addiert. Es sind bis zu 6 Klammerebenen möglich. Die zu addierenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 10
ADD 204 (* Addition zweier Konstanten *)
ST Value
LD 170 (* Addition einer Konstanten und 2 Variablen. *)
ADD Var1, Var2 (* 170dez + Var1 + Var2 *)
ST Value
LD Var1
ADD( Var2
SUB Var3 (* Var1 + ( Var2 - Var3 ) *)
)
ST Value
```

Beispiel in ST:

```
Ergebnis := 10 + 30; (* Das Ergebnis ist 40 *)
Ergebnis := 10 + Var1 + Var2;
```

10.4.1.3 DIV und DIV(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	X

Dividiert den Akku durch den Operanden. Bei Divisionen durch null wird das maximal mögliche Ergebnis in den Akku eingetragen, z.B. bei einer Division mit INT Werten ist das der Wert 0x7FFF oder wenn der Divisor negativ ist dann ist es der Wert 0x8000. Bei der Klammer Division wird der Akku durch das Ergebnis des Klammerausdrucks dividiert. Es sind bis zu 6 Klammerebenen möglich. Die zu dividierenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 10
DIV 3 (* Division zweier Konstanten *)
ST iValue (* Das Ergebnis ist 9 *)
LD 170 (* Division einer Konstanten und 2 Variablen. *)
DIV Var1, Var2 (* (170dez : Var1) : Var2 *)
ST Value
LD Var1 (* Dividiere Var1 durch den Inhalt der Klammer *)
DIV( Var2
SUB Var3
```



```
) (* Var1 : ( Var2 - Var3 ) *) ST Value
```

Beispiel in ST:

```
Ergebnis := 30 / 10; (* Das Ergebnis ist 3 *)
Ergebnis := 30 / Var1 / Var2;
```

10.4.1.4 LIMIT

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		Χ	Χ	Х

Der Befehl begrenzt den im Akku stehenden Wert auf die übergebenen min. und max. Werte. Werte. Bei Überschreitung wird im Akku der max. Wert eingetragen und bei Unterschreitung der min. Wert. Liegt der Wert zwischen den Limits, so erfolgt keine Beeinflussung.

Beispiel in AWL:

```
LD 10 (* Lädt den Wert 10 in den Akku *)
LIMIT 20, 30 (* Der Wert wird mit den Grenzen 20 und 30 verglichen. *)
(* Der Wert im Akku ist kleiner, der Akku wird mit 20 überschrieben*)
ST iValue (* Speichert den Wert 20 in Value1 ab *)
```

Beispiel in ST:

```
Ergebnis := Limit(10, 20, 30); (* Das Ergebnis ist 20 *)
```

10.4.1.5 MAX

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Χ	X

Dieser Befehl ermittelt den maximalen Wert von zwei Variablen oder Konstanten. Dazu wird der aktuelle Akku Inhalt mit dem im MAX Befehl übergebenen Wert verglichen. Der größere von beiden Werten befindet sich nach dem Befehl im Akku. Beide Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 100 (* Lade 100 in den Akku *)
MAX 200 (* Vergleiche mit dem Wert 200 *)
ST iValue (* Speichere 200 in Value2 (weil größter Wert) *)
```

Beispiel in ST:

```
Ergebnis := Max(100, 200); (* Das Ergebnis ist 200 *)
```


10.4.1.6 MIN

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	X	X	Х	Х
	POOL BYTE	INT DINT	1			

	BOOL	BYTE	INT	DINT
Datentyp		Χ	Х	Х

Dieser Befehl ermittelt den minimalen Wert von zwei Variablen oder Konstanten. Dazu wird der aktuelle Akku Inhalt dem im MIN Befehl übergebenen Wert verglichen. Der kleinere von beiden Werten befindet sich nach dem Befehl im Akku. Beide Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 100 (* Lade 100 in den Akku *)
MIN 200 (* Vergleiche mit dem Wert 200 *)
ST Value2 (* Speichere 100 in Value2 (weil kleinerer Wert) *)
```

Beispiel in ST:

```
Ergebnis := Min(100, 200); (* Speichere 100 in Value2 (weil kleinerer Wert) *)
```

10.4.1.7 MOD und MOD(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	Х	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Der Akku wird durch eine oder mehrere Variablen oder Konstanten dividiert, der Rest der Division steht als Ergebnis im Akku. Bei der Klammer Modulo wird der Akku durch das Ergebnis des Klammerausdrucks dividiert und daraus der Modulo gebildet. Es sind bis zu 6 Klammerebenen möglich.

Beispiel in AWL:

```
LD 25 (* Lade den Dividend *)
MOD 20 (* Division 25/20 à Modulo = 5 *)
ST Var1 (* Speicher Ergebnis 5 in Var1 *)
LD 25 (* Lade den Dividend *)
MOD( Var1 (* Ergebnis = 25/(Var1 + 10) à Modulo in den Akku *)
ADD 10
)
ST Var3 (* Speicher Ergebnis 10 in Var3 *)
```

Beispiel in ST:

```
Ergebnis := 25 MOD 20; (* Speicher Ergebnis 5 in Varl *)
Ergebnis := 25 MOD (Varl + 10); (* Ergebnis = 25/(Varl + 10) à Modulo in den Akku *)
```

10.4.1.8 MUL und MUL(

SK 54xE	SK 53xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS
	SK 52xE			SK 190E	SK 175E-FDS

Multiplikation des Akkus mit einer oder mehreren Variablen oder Konstanten. Bei der Klammer Multiplikation wird der Akku mit dem Ergebnis des Klammerausdrucks multipliziert. Es sind bis zu 6 Klammerebenen möglich. Beide Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 25 (* Lade den Multiplikator *)
MUL Var1, Var2 (* 25 * Var1 * Var2 *)
ST Var2 (* Speicher Ergebnis *)
LD 25 (* Lade den Multiplikator *)
MUL( Var1 (* Ergebnis = 25*(Var1 + Var2) *)
ADD Var2
ST Var3 (* Speicher Ergebnis als Variable Var3 *)
)
```

Beispiel in ST:

```
Ergebnis := 25 * Var1 * Var2;
Ergebnis := 25 * (Var1 + Var2);
```

10.4.1.9 MUX

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	Χ	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	X

Über einen Index, der sich vor dem Befehl im Akku befindet, können verschiedene Konstanten oder Variablen selektiert werden. Der <u>erste Wert</u> wird über den <u>Index 0</u> angesprochen. Der ausgewählte Wert wird in den Akku geladen. Die Anzahl der Werte ist nur durch den Programmspeicher limitiert.

Beispiel in AWL:

```
LD 1 (* Wähle das gewünschte Element aus *) MUX 10,20,30,40,Value1 (* MUX Befehl mit 4 Konstanten und einer Variable *) ST Value (* Speichere Ergebnis = 20 *)
```

Beispiel in ST:

```
Ergebnis := Mux(1, 10, 20, 30, 40, Value1) (* Speichere Ergebnis = 20 *)
```

10.4.1.10 SUB und SUB(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	X	X

Subtrahiert den Akku mit einer oder mehreren Variablen oder Konstanten. Bei der Klammer Subtraktion wird der Akku mit dem Ergebnis des Klammerausdrucks subtrahiert. Es sind bis zu 6 Klammerebenen möglich. Die zu subtrahierenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 10
SUB Var1 (* Ergebnis = 10 - Var1 *)
ST Ergebnis
LD 20
SUB Var1, Var2, 30 (* Ergebnis = 20 - Var1 - Var12 - 30 *)
ST Ergebnis
LD 20
SUB( 6 (* Subtrahiere 20 mit den Inhalt der Klammer *)
AND 2
) (* Ergebnis = 20 - (6 AND 2) *)
ST Ergebnis (* Ergebnis = 18 *)
```

Beispiel in ST:

Ergebnis := 10 - Value1;

10.4.2 Erweiterte mathematische Operatoren

1 Information

Die hier aufgeführten Operatoren sind sehr rechenintensiv. Es kann zu deutlich längeren Laufzeiten des PLC Programmes kommen.

10.4.2.1 COS, ACOS, SIN, ASIN, TAN, ATAN

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	Х	Х		
	BOOL BYTE	INT DINT				

	BOOL	BYTE	INT	DINT
Datentyp				Χ

Berechnung der jeweiligen mathematischen Funktion. Der zu berechnende Wert muss im Akku in Bogenminuten vorliegen. Die Skalierung entspricht 1 = 1000.

Umrechnung: Winkel in Bogenmaß = (Winkel in Grad * PI / 180)*1000 z.B. ein Winkel von 90° wird wie folgt umgerechnet à 90° * 3.14 / 180) *1000 = 1571

$$AE = \sin\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \cos\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \tan\left(\frac{AE}{1000}\right) \cdot 1000$$

Beispiel in AWL:

```
LD 1234
SIN
ST Ergebnis (* Ergebnis = 943 *)
```

Beispiel in ST:

```
Ergebnis := COS(1234); (* Ergebnis = 330 *)
Ergebnis := ACOS(330); (* Ergebnis = 1234 *)
```



```
Ergebnis := SIN(1234); (* Ergebnis = 943 *)

Ergebnis := ASIN(943); (* Ergebnis = 1231 *)

Ergebnis := TAN(999); (* Ergebnis = 1553 *)

Ergebnis := ATAN(1553); (* Ergebnis = 998 *)
```

10.4.2.2 EXP

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X		

	BOOL	BYTE	INT	DINT
Datentyp				X

Bildet aus dem Akku die Exponentialfunktion zur Basis der Eulerschen Zahl (2,718). Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,002 muss als 1002 eingegeben werden.

$$AE = e^{\left(\frac{AE}{1000}\right)} \cdot 1000$$

Beispiel in AWL:

```
LD 1000
EXP
ST Ergebnis (* Ergebnis = 2718 *)
```

Beispiel in ST:

```
Ergebnis := EXP(1000); (* Ergebnis = 2718 *)
```

10.4.2.3 LN

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	Х	X	X		

	BOOL	BYTE	INT	DINT
Datentyp				Χ

Logarithmus zur Basis e (2,718). Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,000 muss als 1000 eingegeben werden.

$$AE = \ln\left(\frac{AE}{1000}\right) \cdot 1000$$

Beispiel in AWL:

LD 1234 LN ST Ergebnis

Beispiel in ST:

Ergebnis := LN(1234); (* Ergebnis = 210 *)

10.4.2.4 LOG

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X		

	BOOL	BYTE	INT	DINT
Datentyp				Χ

Bildet aus dem Akku den Logarithmus zur Basis 10. Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,000 muss als 1000 eingegeben werden.

$$AE = log_{10} \left(\frac{AE}{1000} \right) \cdot 1000$$

Beispiel in AWL:

```
LD 1234
LOG
ST Ergebnis (* Ergebnis = 91 *)
```

Beispiel in ST:

```
Ergebnis := LOG(1234); (* Ergebnis = 91 *)
```

10.4.2.5 SQRT

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	

	BOOL	BYTE	INT	DINT
Datentyp				Х

Bildet aus dem Akku die Quadratwurzel. Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,000 muss als 1000 eingegeben werden.

$$AE = \sqrt{\left(\frac{AE}{1000}\right)} \cdot 1000$$

Beispiel in AWL:

```
LD 1234
SQRT
ST Ergebnis (* Ergebnis = 1110 *)
```

Beispiel in ST:

```
Ergebnis := SQRT(1234); (* Ergebnis = 1110 *)
```

BU 0000 de-1017 141

10.4.3 Bit Operatoren

10.4.3.1 AND und AND(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp	Х	Χ	Х	Х

Bitweise UND Verknüpfung des AE/Akku mit einer oder zwei Variablen oder Konstanten. Bitweise UND(...) Verknüpfung mit dem AE/Akku und dem AE/Akku welches zuvor in der Klammer gebildet wurde. Es sind bis zu 6 Klammerebenen möglich. Alle Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 170
AND 204 (* AND Verknüpfung zwischen 2 Konstanten *)
(* Akku = 136 (Siehe Beispiel unter der Tabelle) *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen.*)
AND Var1, Var2 (* Akku = 170dez AND Var1 AND Var2 *)

LD Var1
AND ( Var2 (* AE/Akku = Var1 AND ( Var2 OR Var3 ) *)
OR Var3
)
```

Beispiel in ST:

```
Ergebnis := 170 AND 204; (* Ergebnis = 136dez *)
```

Var2	Var1	Ergebnis
0	0	0
0	1	0
1	0	0
1	1	1

Beispiel: 170dez (1010 1010bin) AND 204dez (1100 1100bin) = (1000 1000bin) 136dez

10.4.3.2 ANDN und ANDN(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp	Х	Χ	Χ	Χ

Bitweise UND Verknüpfung des AE/Akkus mit einem negierten Operanden. Bitweise UND (...) Verknüpfung mit dem AE/Akku und dem negierten Ergebnis der Klammer. Es sind bis zu 6 Klammerebenen möglich. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.


```
LD 2#0000_1111
ANDN 2#0011_1010 (* ANDN Verknüpfung zwischen 2 Konstanten *)
(* Akku = 2#1111_0101 *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen. *)
ANDN Var1, Var2 (* Akku = 170d ANDN Var1 ANDN Var2 *)

LD Var1
ANDN ( Var2 (* AE/Akku = Var1 ANDN ( Var2 OR Var3 ) *)
OR Var3
)
```

Var2	Var1	Ergebnis
0	0	1
0	1	1
1	0	1
1	1	0

Beispiel: 170dez (1010 1010bin) AND 204dez (1100 1100bin) = (1000 1000bin) 136dez

10.4.3.3 NOT

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp	Х	Χ	X	X

Bitweise Negation des Akku's.

Beispiel in AWL:

```
LD BYTE#10 (* Lade In den AKKU den Wert 10dez im Format Byte *)
NOT (* Der Wert wird auf Bit - Ebene aufgelöst (0000 1010), *)
(* bitweise negiert (1111 0101) und wieder in einen Dezimalwert *)
(* gewandelt, Ergebnis = 245dez *)
ST Var3 (* Speicher Ergebnis als Variable Var3 *)
```

Beispiel in ST:

```
Ergebnis := not BYTE#10; (* Ergebnis = 245dez *)
```

10.4.3.4 OR und OR(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT	
Datentyp	Х	Х	Х	Х	

BU 0000 de-1017 143

Bitweise ODER Verknüpfung des AE/Akku mit einer oder zwei Variablen oder Konstanten. Bitweise ODER(...) Verknüpfung mit dem AE/Akku und dem AE/Akku welches zuvor in der Klammer gebildet wurde. Es sind bis zu 6 Klammerebenen möglich. Alle Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 170
OR 204 (* OR Verknüpfung zwischen 2 Konstanten *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen. *)
OR Var1, Var2 (* Akku = 170d OR Var1OR Var2 *)

LD Var1
OR ( Var2 (* AE/Akku = Var1 OR ( Var2 AND Var3 ) *)
AND Var3
)
```

Beispiel in ST:

```
Ergebnis := 170 or 204; (* Ergebnis = 238 *)
```

Var2	Var1	Ergebnis
0	0	0
0	1	1
1	0	1
1	1	1

10.4.3.5 ORN undORN(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp	Х	X	X	Х

Bitweise ODER Verknüpfung des AE/Akkus mit einem negierten Operanden. Bitweise ODER (...) Verknüpfung mit dem AE/Akku und dem negierten Ergebnis der Klammer. Es sind bis zu 6 Klammerebenen möglich. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 2#0000_1111

ORN 2#0011_1010 (* ORN Verknüpfung zwischen 2 Konstanten *)

(* Akku = 2#1100_0000 *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen. *)

ORN Var1, Var2 (* Akku = 170d ORN Var1 ORN Var2 *)

LD Var1

ORN ( Var2 (* AE/Akku = Var1 ORN ( Var2 OR Var3 ) *)

OR Var3
)
```


Beispiel in ST:

```
Ergebnis := 2#0000 1111 ORN 2#0011 1010; (* Ergebnis = 2#1100 0000 *)
```

Var2	Var1	Ergebnis
0	0	1
0	1	0
1	0	0
1	1	0

10.4.3.6 ROL

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Χ

Bitweise Linksrotation des Akkus. Dabei wird der Inhalt des Akkus um n mal nach links verschoben, wobei das links Bit wieder rechts reingeschoben wird.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111*) ROL 2 (* Akku Inhalt wird 2 mal nach links rotiert *) ST Value1 (* Speichert den Wert 1011_1110 ab *)
```

Beispiel in ST:

```
Ergebnis := ROL(BYTE#175, 2); (* Ergebnis = 2#1011\_1110 *)
Ergebnis := ROL(INT#175, 2); (* Ergebnis = 16\#C02B *)
```

10.4.3.7 ROR

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		Χ	Χ	Χ

Bitweise Rechtsrotation des Akkus. Dabei wird der Inhalt des Akkus um n mal nach rechts verschoben, wobei das rechte Bit wieder links reingeschoben wird.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111*)
ROR 2 (* Akku Inhalt wird 2 mal nach rechts rotiert *)
ST Value1 (* Speichert den Wert 1110 1011 ab *)
```


Beispiel in ST:

```
Ergebnis := ROR(BYTE#175, 2); (* Ergebnis = 2#1110_1011 *)
```

10.4.3.8 S und R

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp	Х			

Setzen und Rücksetzen einer boolschen Variable, wenn das vorherige Verknüpfungsergebnis (das AE) TRUE war.

Beispiel in AWL:

```
LD TRUE (* Lädt das AE mit TRUE *)
S Varl (* VAR1 wird TRUE gesetzt *)
R Varl (* VAR1 wird FALSE gestzt *)
```

Beispiel in ST:

```
Ergebnis := TRUE;
Ergebnis := FALSE;
```

10.4.3.9 SHL

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		Χ	Χ	X

Bitweises Linksschieben des Akkus. Dabei wird der Inhalt des Akku um n mal nach links verschoben, die rausgeschobenen Bits sind verloren.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111 *)
SHL 2 (* Akku Inhalt wird 2 mal nach links verschoben *)
ST Value1 (* Speichert den Wert 1011_1100 ab *)
```

Beispiel in ST:

```
Ergebnis := SHL(BYTE#175, 2); (* Ergebnis = 2#1011_{-}1100 *)
Ergebnis := SHL(INT#175, 2); (* Ergebnis = 16#2BC_{-}*)
```

10.4.3.10 SHR

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X
	BOOL BYTE	INT DINT				

Datentyp X X X

Bitweises Rechtsschieben des Akkus. Dabei wird der Inhalt des Akkus um n mal nach rechts verschoben, die rausgeschobenen Bits sind verloren.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111 *)
SHR 2 (* Akku Inhalt wird 2 mal nach rechts verschoben *)
ST Value1 (* Speichert den Wert 0010 1011 ab *)
```

Beispiel in ST:

```
Ergebnis := SHR(BYTE#175, 2); (* Ergebnis = 2#0010\_1011 *)
```

10.4.3.11 XOR und XOR(

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp	Х			

Bitweises "Exklusiv Oder" Verknüpfung zwischen dem AE/Akku und ein bis zwei Variablen oder Konstanten. Der erste Wert befindet sich im AE/Akku der zweite wird mit dem Befehl geladen oder er befindet sich innerhalb der Klammer. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

Beispiel in ST:

```
Ergebnis := 2#0000 1111 XOR 2#0011 1010; (* Ergebnis = 2#0011 0101 *)
```

Var2	Var1	Ergebnis
0	0	0
0	1	1
1	0	1
1	1	0

10.4.3.12 XORN und XORN(

SK 54xE SK 53xE	SK 2xxE SK 2xxE-	-FDS SK 180E SK 155E-FDS
-----------------	------------------	--------------------------

		SK 52xE			SK 190E	SK 175E-FDS
Verfügbarkeit	Х	Х	X	Х	Х	X

	BOOL	BYTE	INT	DINT
Datentyp	Х			

Bitweise Exclusiv ODER Verknüpfung des AE/Akkus mit einem negierten Operanden. Bitweise Exclusiv ODER (...) Verknüpfung mit dem AE/Akku und dem negierten Ergebnis der Klammer. Es sind bis zu 6 Klammerebenen möglich. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

Beispiel in ST:

```
Ergebnis := 2#0000_1111 XORN 2#0011_1010; (* Ergebnis = 2#1100_1010 *)
```

Var2	Var1	Ergebnis
0	0	1
0	1	0
1	0	0
1	1	1

10.4.4 Lade- und Speicheroperatoren

10.4.4.1 LD

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp	X	Χ	X	X

Lädt eine Konstante oder eine Variable in den AE bzw. in den Akku.

Beispiel in AWL:

```
LD 10 (* Lädt die 10 als BYTE *) LD -1000 (* Lädt die -1000 als INT *) LD Value1 (* Lädt die Variable Value1 *)
```


10.4.4.2 LDN

	SK 5	4xE		53xE 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X		X		Х	Х	X	X
	BOOL	BYTE	INT	DINT				
Datentyp	Х							

Lädt eine boolesche Variablen negiert in den AE.

Beispiel in AWL:

```
LDN Value1 (* Value1 = TRUE à AE = FALSE *)
ST Value2 (* Speicher auf Value2 = FALSE *)
```

10.4.4.3 ST

	SK 5	4xE	SK 5	3xE 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	<u></u>	Х		Х	Х	Х	Х
	BOOL	BYTE	INT	DINT				
Datentyp	Х	Х	Х	Х				

Speichert den Inhalt des AE/Akku auf eine Variable ab. Die abzuspeichernde Variable muss zu dem vorher geladenen und verarbeiteten Datentyp passen.

Beispiel in AWL:

```
LD 100 (* Lädt den Wert 1010_1111 *)
ST Value1 (* Akku Inhalt 100 wird in Value1 abgespeichert *)
```

10.4.4.4 STN

	SK 5	4xE		3xE 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	<u>.</u>)	<	Х	X	X	X
	BOOL	BYTE	INT	DINT				
Datentyn	X							

Speichert den Inhalt des AE auf eine Variable ab und negiert ihn. Die abzuspeichernde Variable muss zu dem vorher geladenen und verarbeiteten Datentyp passen.

Beispiel in AWL:

```
LD Value1 (* Value1 = TRUE à AE = TRUE *)
STN Value2 (* Speicher auf Value2 = FALSE *)
```

10.4.5 Vergleichs Operatoren

10.4.5.1 EQ

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Sind die Werte gleich, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)

EQ 10 (* AE = Ist 5 gleich 10 ? *)

JMPC NextStep (* AE = FALSE à Programm springt nicht *)

ADD 1

NextStep:

ST Value1
```

Beispiel in ST:

```
(* Ist Value = 10 *)
if Value = 10 then
  Value2 := 5;
end if;
```

10.4.5.2 GE

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		X	X	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku größer oder gleich der Variabel oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)

GE 10 (* Ist 5 größer oder gleich 10? *)

JMPC NextStep (* AE = FALSE à Programm springt nicht *)

ADD 1

NextStep:

ST Value1
```

Beispiel in ST:

```
(* Ist 5 größer oder gleich 10? *)
if Value >= 10 then
  Value := Value - 1
end_if;
```

10.4.5.3 GT

SK 54xE	SK 53xE	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS

10 PLC

		SK 52xE			SK 190E	SK 175E-FDS
Verfügbarkeit	X	X	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	X	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku größer als die Variabel oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1(* Value1 = 12 *)
GT 8 (* Ist 12 größer als 8? *)
JMPC NextStep (* AE = TRUE - Programm springt *)
ADD 1
NextStep:
ST Value1
```

Beispiel in ST:

```
(* Ist 12 größer als 8? *)
if Value > 8 then
 Value := 0;
end if;
```

10.4.5.4 LE

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku kleiner oder gleich der Variablen oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)
LE 10 (* Ist 5 kleiner oder gleich 10? *)
JMPC NextStep:
ST Value1
```

Beispiel in ST:

```
(* Ist Value kleiner oder gleich 10?*)
if Value <= 10 then
 Value := 11;
end if;
```

10.4.5.5 LT

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

DINT

INT

BOOL BYTE

Datentyp	Χ	X	Х	

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku kleiner als die Variablen oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 12 *)
LT 8 (* Ist 12 kleiner 8 ? *)
JMPC NextStep (* AE = FALSE à Programm springt nicht *)
ADD 1
NextStep:
ST Value1
```

Beispiel in ST:

```
(* Ist Value kleiner als 0? *)
if Value < 0 then
  Value := 0;
end if;</pre>
```

10.4.5.6 NE

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Χ	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku ungleich der Variablen oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)
NE 10 (*Ist 5 ungleich 10 ?*)
JMPC NextStep (* AE = TRUE à Programm springt *)
ADD 1
NextStep:
ST Value1
```

Beispiel in ST:

```
if Value <> 5 then
Value := 5;
end_if;
```

10.5 Prozesswerte

Alle analogen und digitalen Ein- und Ausgänge bzw. Bussoll- und Istwert können durch die PLC gelesen und weiterverarbeitet bzw. durch die PLC gesetzt (wenn Ausgangswert) werden. Der Zugriff auf die einzelnen Werte erfolgt über die hier nachfolgend aufgeführten Prozesswerte. Für alle Ausgangswerte muss der Ausgang (z.B. Digitalausgänge oder PLC Sollwert) so programmiert werden, dass als Ereignisquelle die PLC vorgesehen ist. Alle Prozessdaten werden von der PLC bei jedem neuen zyklischen Durchlauf am Anfang vom Gerät eingelesen und erst am Ende des PLC Programms in das Gerät geschrieben! In den nachfolgenden Tabellen sind alle Werte dargestellt, auf

welche die PLC – Funktion direkt zugreifen kann. Auf alle anderen Prozesswerte muss über die Funktionsblöcke MC_ReadParameter oder MC_WriteParameter zugegriffen werden.

10.5.1 Ein- und Ausgänge

Hier sind alle Prozesswerte zusammengefasst, die das I/O- Interface des Gerätes beschreiben.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: Dout1 Bit 3: Dout2 Bit 4: dig. Fkt. Aout Bit 5: Dout3 (Din7) Bit 6: Statuswort Bit 8 Bit 7: Statuswort Bit 9 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7	UINT	R/W	SK 54xE
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: Relais 1 Bit 1: Relais 2 Bit 2: DOUT1 Bit 3: DOUT2 Bit 4: Dig. Analog Out Bit 5: free Bit 6: Bus PZD Bit 10 Bit 7: Bus PZD Bit 13 Bit 8: BuslO Bit0 Bit 9: BuslO Bit1 Bit 10: BuslO Bit2 Bit 11: BuslO Bit3 Bit 12: BuslO Bit4 Bit 13: BuslO Bit5 Bit 14: BuslO Bit5 Bit 14: BuslO Bit6 Bit 15: BuslO Bit6	UINT	R/W	SK 52xE SK 53xE
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: DOUT1 Bit 1: BusIO Bit0 Bit 2: BusIO Bit1 Bit 3: BusIO Bit2 Bit 4: BusIO Bit3 Bit 5: BusIO Bit4 Bit 6: BusIO Bit5 Bit 7: BusIO Bit6 Bit 8: BusIO Bit7 Bit 9: Bus PZD Bit 10 Bit 10: Bus PZD Bit 13 Bit 11: DOUT2	UINT	R/W	SK 2xxE SK 2xxE-FDS

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: BusIO Bit0 Bit 3: BusIO Bit1 Bit 4: BusIO Bit2 Bit 5: BusIO Bit3 Bit 6: BusIO Bit4 Bit 7: BusIO Bit5 Bit 8: BusIO Bit6 Bit 9: BusIO Bit7 Bit 10: Bus PZD Bit 10 Bit 11: Bus PZD Bit 13	UINT	R/W	SK 180E SK 190E
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: DOUT_BRAKE Bit 3: DOUT_BUS1 Bit 4: DOUT_BUS2	UINT	R/W	SK 155E-FDS SK 175E-FDS
_1_Set_analog_output	Setzen analoger Ausgang FU	10,0V = 100	BYTE	R/W	SK 54xE SK 53xE SK 52xE
_2_Set_external_analo g_out1	Setzen analoger Ausgang 1. IOE	10,0V = 100	BYTE	R/W	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_3_Set_external_analo g_out2	Setzen analoger Ausgang 2. IOE	10,0V = 100	ВУТЕ	R/W	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_4_State_digital_output	Zustand digitale Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: Dout1 Bit 3: Dout2 Bit 4: dig. Fkt. Aout Bit 5: Dout3 (Din7) Bit 6: Bus Statuswort Bit 8 Bit 7: Statuswort Bit 9 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit6	INT	R	SK 54xE
_4_State_digital_output	Zustand digitale	P711	BYTE	R	SK 52xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
	Ausgänge				SK 53xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_4_State_digital_output	Zustand digitale Ausgänge	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: DOUT_BRAKE Bit 3: DOUT_BUS1 Bit 4: DOUT_BUS2	BYTE	R	SK 155E-FDS SK 175E-FDS
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7 Bit 7: Digitalfunktion AIN1 Bit 8: Digitalfunktion AIN2	INT	R	SK 54xE
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7	INT	R	SK 52xE SK 53xE
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4/AIN1 Bit 4: AIN2 Bit 5: Kaltleiter Bit 6: free Bit 7: free Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE SK 180E SK 190E
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: TF (Kaltleiter) Bit 4: DIN-BUS1 (ASiI1)	INT	R	SK 155E-FDS SK 175E-FDS

Name	Funktion	Normierung	Тур	Zugriff	Gerät
		Bit 5: DIN-BUS2 (ASiI2) Bit 6: DIN-BUS3 (ASiI3) Bit 7: DIN-BUS4 (ASiI4) Bit 8: STO Bit 9: BDDI1 (ASIO3) Bit10: BDDI2 (ASIO4)			
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6/AIN1 Bit 6: DIN7/AIN2 Bit 7: Kaltleiter Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE-FDS
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7 Bit 7: Digitalfunktion AIN1 Bit 8: Digitalfunktion AIN2	INT	R	SK 54xE
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7	INT	R	SK 52xE SK 53xE
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: AIN1 Bit 4: AIN2 Bit 5: Kaltleiter Bit 6: free Bit 7: free Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1	INT	R	SK 2xxE SK 180E SK 190E

Name	Funktion	Normierung	Тур	Zugriff	Gerät
		Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2			
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6/AIN1 Bit 6: DIN7/AIN2 Bit 7: Kaltleiter Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE-FDS
_7_Analog_input1	Wert Analogeingang 1 (AIN1)	10,00V = 1000	INT	R	alle
_8_Analog_input2	Wert Analogeingang 2 (AIN2)	10,00V = 1000	INT	R	alle
_9_Analog_input3	Wert Analogfunktion DIN2	10,00V = 1000	INT	R	SK 54xE SK 155E-FDS SK 175E-FDS
_10_Analog_input4	Wert Analogfunktion DIN3	10,00V = 1000	INT	R	SK 54xE SK 155E-FDS SK 175E-FDS
_11_External_analog_i nput1	Wert analoger Eingang 1 (1.IOE)	10,00V = 1000	INT	R	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_12_External_analog_i nput2	Wert analoger Eingang 2 (1.IOE)	10,00V = 1000	INT	R	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_13_External_analog_i nput3	Wert analoger Eingang 1 (2.IOE)	10,00V = 1000	INT	R	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_14_External_analog_i nput4	Wert analoger Eingang 2 (2.IOE)	10,00V = 1000	INT	R	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_15_State_analog_outp	Zustand analoger Ausgang	10,0V = 100	BYTE	R	SK 54xE
_16_State_ext_analog_ out1	Zustand Analogausgang (1. IOE)	10,00V = 1000	INT	R	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_17_State_ext_analog_ out2	Zustand Analogausgang (2. IOE)	10,00V = 1000	INT	R	SK 54xE SK 2xxE SK 180E SK 190E
_18_Dip_switch_state	Zustand der DIP Schalter	Bit 0: DIP1 Bit 1: DIP2 Bit 2: DIP3 Bit 3: DIP4 Bit 4: DIP_I1 Bit 5: DIP_I2 Bit 6: DIP_I3 Bit 7: DIP_I4	INT	R	SK 155E-FDS SK 175E-FDS

10.5.2 PLC Soll- und Istwerte

Die hier aufgeführten Prozesswerte bilden die Schnittstelle der PLC zum Gerät. Die Funktion der PLC Sollwerte wird im (P553) festgelegt.

1 Information

Der Prozesswert PLC_control_word überschreibt den Funktionsblock MC_Power. Die PLC Sollwerte überschreiben die Funktionsblöcke MC_Move.... und MC_Home.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_20_PLC_control_word	PLC Steuerwort	Entspricht USS Profil	INT	R/W	alle
_21_PLC_set_val1	PLC Sollwert 1	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_22_PLC_set_val2	PLC Sollwert 2	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_23_PLC_set_val3	PLC Sollwert 3	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_24_PLC_set_val4	PLC Sollwert 4	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS
_25_PLC_set_val5	PLC Sollwert 5	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS
_26_PLC_additional_co ntrol_word1	PLC Zusatzsteuerwort 1	Entspricht USS Profil	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_27_PLC_additional_co ntrol_word2	PLC Zusatzsteuerwort 2	Entspricht USS Profil	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_28_PLC_status_word	PLC Statuswort	Entspricht USS Profil	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_29_PLC_act_val1	PLC Istwert 1	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_30_PLC_act_val2	PLC Istwert 2	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_31_PLC_act_val3	PLC Istwert 3	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_32_PLC_act_val4	PLC Istwert 4	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS
_33_PLC_act_val5	PLC Istwert 5	100% = 4000h	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS
_34_PLC_Busmaster_ Control_word	Steuerwort der Leitfunktion (Busmasterfunktion) über PLC	Entspricht USS Profil	INT	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_35_PLC_32Bit_set_val	32Bit PLC Sollwert - P553[1] = Low Part des 32Bit Wert - P553[2] = High Part des 32Bit Wert		LONG	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_36_PLC_32Bit_act_val	32Bit PLC Istwert - PLC Istwert 1 = Low Part des 32Bit Wert - PLC Istwert 2 = High Part des 32Bit Wert	_	LONG	R/W	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_37_PLC_status_bits	Virtuelle Status- Ausgänge der PLC	Bit 0: PLC-DOUT1 Bit 1: PLC-DOUT2	INT	R/W	SK 155E-FDS SK 175E-FDS
_38_PLC_control_bits	Virtuelle Steuer-	Bit 0: PLC-DIN1	INT	R/W	SK 155E-FDS

Name	Funktion	Normierung	Тур	Zugriff	Gerät
	Ausgänge der PLC	Bit 1: PLC-DIN2			SK 175E-FDS
		Bit 2: PLC-DIN3			
		Bit 3: PLC-DIN4			
		Bit 4: PLC-DIN5			
		Bit 5: PLC-DIN6			
		Bit 6: PLC-DIN7			
		Bit 7: PLC-DIN8			

10.5.3 Bus Soll- und Istwerte

Diese Prozesswerte spiegeln alle Soll- und Istwerte wieder, die über die verschiedenen Bussysteme in das Gerät gelangen.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_40_Inverter_status	FU Statuswort	Entspricht USS Profil	INT	R	alle
_41_Inverter_act_val1	FU Istwert 1	100% = 4000h	INT	R	alle
_42_Inverter_act_val2	FU Istwert 2	100% = 4000h	INT	R	alle
_43_Inverter_act_val3	FU Istwert 3	100% = 4000h	INT	R	alle
_44_Inverter_act_val4	FU Istwert 4	100% = 4000h	INT	R	SK 54xE
_45_Inverter_act_val5	FU Istwert 5	100% = 4000h	INT	R	SK 54xE
_46_Inverter_lead_val1	Broadcast Master Funktion: Leitwert 1	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_47_Inverter_lead_val2	Broadcast Master Funktion: Leitwert 2	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_48_Inverter_lead_val3	Broadcast Master Funktion: Leitwert 3	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_49_Inverter_lead_val4	Broadcast Master Funktion: Leitwert 4	100% = 4000h	INT	R	SK 54xE
_50_Inverter_lead_val5	Broadcast Master Funktion: Leitwert 5	100% = 4000h	INT	R	SK 54xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_51_Inverter_control_w ord	Resultierendes Steuerwort Bus	Entspricht USS Profil	ÎNT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_52_Inverter_set_val1	Resultierender Hauptsollwert 1 Bus	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_53_Inverter_set_val2	Resultierender Hauptsollwert 2 Bus	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_54_Inverter_set_val3	Resultierender Hauptsollwert 3 Bus	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_55_Inverter_set_val4	Resultierender Hauptsollwert 4 Bus	100% = 4000h	INT	R	SK 54xE
_56_Inverter_set_val5	Resultierender Hauptsollwert 5 Bus	100% = 4000h	INT	R	SK 54xE
_57_Broadcast_set_val	Broadcast Slave: Nebensollwert 1	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_58_Broadcast_set_val 2	Broadcast Slave: Nebensollwert 2	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_59_Broadcast_set_val 3	Broadcast Slave: Nebensollwert 3	100% = 4000h	INT	R	SK 54xE SK 53xE SK 52xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 2xxE SK 180E SK 190E
_60_Broadcast_set_val	Broadcast Slave: Nebensollwert 4	100% = 4000h	INT	R	SK 54xE
_61_Broadcast_set_val	Broadcast Slave: Nebensollwert 5	100% = 4000h	INT	R	SK 54xE
_62_Inverter_32Bit_set _val1	Resultierender 32Bit Hauptsollwert 1 Bus	- Low Part in P546[1] - High Part in P546[2]	LONG	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_63_Inverter_32Bit_act _val1	FU 32Bit Istwert 1	- Low Part in P543[1] - High Part in P543[2]	LONG	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_64_Inverter_32Bit_lea d_val1	32Bit Leitwert 1	- Low Part in P502[1] - High Part in P502[2]	LONG	R	SK 54xE SK 2xxE SK 180E SK 190E
_65_Broadcast_32Bit_s et_val1	32Bit Broadcast Slave Nebensollwert 1	- Low Part in P543[1] - High Part in P543[2]	LONG	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_66_BusIO_input_bits	Eingehende Busl/O Daten	- Bit0 - 7 = Bus I/O In Bit 0 - 7 - Bit 8 = Merker 1 - Bit 9 = Merker 2 - Bit 10 = Bit8 vom Bus Steuerwort - Bit 11 = Bit9 vom Bus Steuerwort	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E

10.5.4 ControlBox und ParameterBox

Über die hier aufgeführten Prozesswerte kann auf die Bedienboxen zugegriffen werden. Damit ist die Realisierung einfacher HMI Anwendungen möglich.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_70_Set_controlbox_sh ow_val	Anzeigewert für die ControlBox	Anzeigewert = Bit 29 – Bit 0	DINT	R/W	alle
		Kommastelle = Bit 31 -			

		Bit30			
_71_Controlbox_key_st ate	Tastaturzustand der ControlBox	Bit 0: ON Bit 1: OFF Bit 2: DIR Bit 3: UP Bit 4: DOWN Bit 5: Enter	BYTE	R	alle
_72_Parameterbox_key _state	Tastaturzustand der ParameterBox	Bit 0: ON Bit 1: OFF Bit 2: DIR Bit 3: UP Bit 4: DOWN Bit 5: Enter Bit 6: Right Bit 7: Left	BYTE	R	alle

10.5.5 Infoparameter

Hier sind die wichtigsten Istwerte des Gerätes aufgeführt.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_80_Current_fault	aktuelle Störungsnummer	Fehler 10.0 = 100	BYTE	R	alle
_81_Current_warning	aktuelle Warnung	Warnung 10.0 = 100	BYTE	R	alle
_82_Current_reason_FI _blocked	aktuelle Ursache für den Zustand Einschaltsperre	Problem 10.0 = 100	BYTE	R	alle
_83_Input_voltage	aktuelle Netzspannung	100 V = 100	INT	R	alle
_84_Current_frequenz	aktuelle Frequenz	10Hz = 100	INT	R	alle
_85_Current_set_point_ frequency1	aktuelle Sollfrequenz von der Sollwertquelle	10Hz = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_86_Current_set_point_ frequency2	aktuelle Sollfrequenz Umrichter	10Hz = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_87_Current_set_point_ frequency3	aktuelle Sollfrequenz nach Rampe	10Hz = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE SK 180E

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 190E
_88_Current_Speed	aktuelle berechnete Drehzahl	100rpm = 100	INT	R	alle
_89_Actual_current	aktueller Ausgangsstrom	10.0A = 100	INT	R	alle
_90_Actual_torque_curr	aktueller Momentstrom	10.0A = 100	INT	R	alle
_91_Current_voltage	aktuelle Spannung	100V = 100	ÎNT	R	alle
_92_Dc_link_voltage	aktuelle Zwischenkreisspannung	100V = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_93_Actual_field_curre nt	aktueller Feldstrom	10.0A = 100	INT	R	alle
_94_Voltage_d	aktuelle Spannungskomponente d-Achse	100V = 100	INT	R	alle
_95_Voltage_q	aktuelle Spannungskomponente q-Achse	100V = 100	INT	R	alle
_96_Current_cos_phi	aktueller Cos(phi)	0.80 = 80	BYTE	R	alle
_97_Torque	aktuelles Drehmoment	100% = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_98_Field	aktuelles Feld	100% = 100	ВУТЕ	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_99_Apparent_power	aktuelle Scheinleistung	1,00KW = 100	INT	R	alle
_100_Mechanical_pow er	aktuelle mechanische Leistung	1,00KW = 100	INT	R	alle
_101_Speed_encoder	aktuelle gemessene Drehzahl	100rpm = 100	INT	R	SK 54xE SK 53xE SK 52xE
_102_Usage_rate_moto r	aktuelle Auslastung Motor (Momentanw.)	100% = 100	INT	R	alle

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_103_Usage_rate_moto r_l2t	aktuelle Auslastung Motor I2t	100% = 100	INT	R	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_104_Usage_rate_brak e_resistor	aktuelle Auslastung Bremswiderstand	100% = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_105_Head_sink_temp	aktuelle Kühlkörpertemperatur	100°C = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_106_Inside_temp	aktuelle Innenraumtemperatur	100°C = 100	INT	R	SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_107_Motor_temp	aktuelle Motortemperatur	100°C = 100	INT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_108_Actual_net_frequency	aktuelle Netzfrequenz	10Hz = 100	INT	R	SK 155E-FDS SK 175E-FDS
_109_Mains_phase_se quence	aktuelle Netz- Phasenfolge	0=CW, 1=CCW	BYTE	R	SK 155E-FDS SK 175E-FDS
_141_Pos_Sensor_Inc	Position des Inkrementalgeber	0.001 Umdrehung	DINT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_142_Pos_Sensor_Abs	Position des Absolutwertgeber	0.001 Umdrehung	DINT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_143_Pos_Sensor_Uni	Position des	0.001 Umdrehung	DINT	R	SK 54xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
	Universalgeber				
_144_Pos_Sensor_HTL	Position des HTL-Geber	0.001 Umdrehung	DINT	R	SK 54xE
_145_Actual_pos	Istposition	0.001 Umdrehung	DINT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_146_Actual_ref_pos	Aktuelle Sollposition	0.001 Umdrehung	DINT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_147_Actual_pos_diff	Positionsdifferenz zwischen Soll- und Istwert	0.001 Umdrehung	DINT	R	SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E

10.5.6 PLC Fehler

Über die User Error Flags können aus dem PLC Programm heraus die Gerätefehler E23.0 bis E23.2 gesetzt werden.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_110_ErrorFlags	Erzeugt Benutzerfehler im Gerät	Bit 0: E 23.0 Bit 1: E 23.1 Bit 2: E 23.2 Bit 3: E 23.3 Bit 4: E 23.4 Bit 5: E 23.5	ВҮТЕ	R/W	alle
		Bit 6: E 23.6 Bit 7: E 23.7			
_111_ErrorFlags_ext	Erzeugt Benutzerfehler im Gerät	Bit 0: E 24.0 Bit 1: E 24.1 Bit 2: E 24.2 Bit 3: E 24.3 Bit 4: E 24.4 Bit 5: E 24.5 Bit 6: E 24.6 Bit 7: E 24.7	ВУТЕ	R/W	alle

10.5.7 PLC Parameter

Über diese Gruppen von Prozessdaten kann direkt auf die PLC Parameter P355, P356 und P360 zugegriffen werden.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_115_PLC_P355_1	PLC INT Parameter P355 [-01]	-	INT	R	alle
_116_PLC_P355_2	PLC INT Parameter P355 [-02]	-	INT	R	alle
_117_PLC_P355_3	PLC INT Parameter P355 [-03]	-	INT	R	alle
_118_PLC_P355_4	PLC INT Parameter P355 [-04]	-	INT	R	alle
_119_PLC_P355_5	PLC INT Parameter P355 [-05]	-	INT	R	alle
_120_PLC_P355_6	PLC INT Parameter P355 [-06]	-	INT	R	alle
_121_PLC_P355_7	PLC INT Parameter P355 [-07]	-	INT	R	alle
_122_PLC_P355_8	PLC INT Parameter P355 [-08]	-	INT	R	alle
_123_PLC_P355_9	PLC INT Parameter P355 [-09]	-	INT	R	alle
_124_PLC_P355_10	PLC INT Parameter P355 [-10]	-	INT	R	alle
_125_PLC_P356_1	PLC LONG Parameter P356 [-01]	-	DINT	R	alle
_126_PLC_P356_2	PLC LONG Parameter P356 [-02]	-	DINT	R	alle
_127_PLC_P356_3	PLC LONG Parameter P356 [-03]	-	DINT	R	alle
_128_PLC_P356_4	PLC LONG Parameter P356 [-04]	-	DINT	R	alle
_129_PLC_P356_5	PLC LONG Parameter P356 [-05]	-	DINT	R	alle
_130_PLC_P360_1	PLC Anzeige Parameter P360[-01]	-	DINT	R/W	alle
_131_PLC_P360_2	PLC Anzeige Parameter P360[-02]	-	DINT	R/W	alle
_132_PLC_P360_3	PLC Anzeige Parameter P360[-03]	-	DINT	R/W	alle
_133_PLC_P360_4	PLC Anzeige Parameter P360[-04]	-	DINT	R/W	alle
_134_PLC_P360_5	PLC Anzeige Parameter P360[-05]	-	DINT	R/W	alle

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_135_PLC_Scope_Int_ 1	PLC Scope Anzeigewert 1	-	INT	R/W	alle
_136_PLC_Scope_Int_ 2	PLC Scope Anzeigewert 2	-	INT	R/W	alle
_137_PLC_Scope_Int_ 3	PLC Scope Anzeigewert 3	-	INT	R/W	alle
_138_PLC_Scope_Int_ 4	PLC Scope Anzeigewert 4	-	INT	R/W	alle
_139_PLC_Scope_Bool	PLC Scope Anzeigewert 5	-	INT	R/W	alle
_140_PLC_Scope_Bool _2	PLC Scope Anzeigewert 6	-	INT	R/W	alle

10.6 Sprachen

10.6.1 Anweisungsliste (AWL / IL)

10.6.1.1 Allgemein

Datentypen

Die PLC unterstützt die nachfolgend aufgeführten Datentypen.

Name	Benötigter Speicherplatz	Wertebereich
BOOL	1 Bit	0 bis 1
BYTE	1 Byte	0 bis 255
INT	2 Byte	-32768 bis 32767
DINT	4 Byte	-2.147.483.648 bis 2.147.483.647
LABEL_ADDRE SS	2 Byte	Sprungmarke

Literale

Zur besseren Übersicht ist es möglich Konstanten aller Datentypen in verschiedenen Darstellungsformen einzugeben. In nachfolgender Tabelle ist eine Übersicht über alle möglichen Varianten enthalten.

Literal	Beispiel	Zahl in dezimaler Darstellung
Bool	FALSE	0
	TRUE	1
	BOOL#0	0
	BOOL#1	1
Dual (Basis 2)	2#01011111	95
	2#0011_0011	51
	BYTE#2#00001111	15
	BYTE#2#0001_1111	31
Oktal (Basis 8)	8#0571	377
	8#05_71	377
	BYTE#8#10	8
	BYTE#8#111	73
	BYTE#8#1_11	73
Hexadezimal (Basis 16)	16#FFFF	-1
	16#0001_FFFF	131071
	INT#16#1000	4096
	DINT#16#0010_2030	1056816
Ganzzahlige (Basis 10)	10	10
	-10	-10
	10_000	10000
	INT#12	12
	DINT#-100000	-100000
Zeit	TIME#10s50ms	10,050 Sekunden
	T#5s500ms	5,5 Sekunden
	TIME#5.2s	5,2 Sekunden
	TIME#5D10H15M	5Tage+10Stunden+15Minuten
	T#1D2H30M20S	1Tag+2Stunden+30Minuten+20Sekunden

Kommentare

Für die spätere Lesbarkeit des PLC – Programmes ist es empfehlenswert Programmabschnitte mit Erklärungen zu versehen. Diese Kommentare werden im Anwenderprogramm beginnend durch die Zeichenfolge "(*" und abschließend durch "*)" gemäß nachfolgenden Beispielen gekennzeichnet.

```
(* Kommentar über einem Programmblock *)
LD 100 (* Kommentar hinter einem Befehl *)
```


ADD 20

Sprungmarke

Mit Hilfe der Operatoren JMP, JMPC oder JMPCN können ganze Programmteile übersprungen werden. Als Zieladresse wird eine Sprungmarke angegeben. Sie kann mit Ausnahme von Umlauten und "ß" alle Buchstaben, die Zahlen 0 bis 9 und Unterstriche enthalten, andere Zeichen sind nicht zulässig. Über einen Doppelpunkt wird die Sprungmarke abgeschlossen. Sie kann für sich alleine stehen. Es kann sich in derselben Zeile, hinter der Sprungmarke, auch noch ein weiterer Befehl befinden.

Mögliche Varianten könnten wie folgt aussehen:

Beispiel:

```
Sprungmarke:
LD 20

Das_Ist_eine_Sprungmarke:
ADD 10

MainLoop: LD 1000
```

Eine weitere Variant ist die Übergabe einer Sprungmarke als Variable. Dies Variable muss in der Variablentabelle als Typ LABLE_ADDRESS definiert werden, dann können in diese Variable Sprungmarken geladen werden. Hierüber lassen sich sehr einfach Zustandsmaschinen erzeugen, siehe unten

Beispiel:

```
LD FirstTime
JMPC AfterFirstTime
(* Die Labeladresse muss zu Beginn initialisiert werden. *)
LD Address 1
ST Address_Var
LD TRUE
ST FirstTime
AfterFirstTime:
JMP Address Var
Address_1:
LD Address 2
ST Address_Var
JMP Ende
Address 2:
LD Address 3
ST Address Var
JMP Ende
Address 3:
LD Address 1
ST Address_Var
Ende:
```

Funktionsaufrufe

Der Editor unterstützt eine Form von Funktionsaufrufen. In den nachfolgenden Varianten wird die Funktion CTD über die Instanz I_CTD aufgerufen. Die Ergebnisse werden in Variablen gespeichert. Die Bedeutung der im Folgenden verwendeten Funktionen ist weiter hinten im Handbuch erläutert.

Beispiel:

```
LD 10000
ST I_CTD.PV
LD LoadNewVar
ST I_CTD.LD
LD TRUE
ST I CTD.CD
```



```
CAL I_CTD
LD I_CTD.Q
ST ResultVar
LD I_CTD.CV
ST CurrentCountVar
```

Bitweiser Zugriff auf Variablen

Für den Zugriff auf ein Bit aus einer Variablen oder Prozessvariablen, ist eine vereinfachte Schreibweise möglich.

Befehl	Bedeutung
LD Var1.0	lädt das Bit 0 von Var1 ins AE
ST Var1.7	speichert den AE auf das Bit 7 von Var1
EQ Var1.4	vergleicht das AE mit dem Bit4 von Var1

10.6.2 Strukturierter Text (ST)

Der Strukturierte Text besteht aus einer Reihe von Anweisungen, die wie in Hochsprachen bedingt ("IF..THEN..ELSE) oder in Schleifen (WHILE..DO) ausgeführt werden können.

Beispiel:

```
IF value < 7 THEN
  WHILE value < 8 DO
    value := value + 1;
  END_WHILE;
END_IF;</pre>
```

10.6.2.1 Allgemein

Datentypen in ST

Die PLC unterstützt die nachfolgend aufgeführten Datentypen.

Name	Benötigter Speicherplatz	Wertebereich
BOOL	1 Bit	0 bis 1
BYTE	1 Byte	0 bis 255
INT	2 Byte	-32768 bis 32767
DINT	4 Byte	-2.147.483.648 bis 2.147.483.647

Zuweisungsoperator

Auf der linken Seite einer Zuweisung steht ein Operand (Variable, Adresse), dem der Wert des Ausdrucks auf der rechten Seite zugewiesen wird mit dem Zuweisungsoperator ":=".

Beispiel:

```
Var1 := Var2 * 10;
```

Nach Ausführung dieser Zeile hat Var1 den zehnfachen Wert von Var2.

Aufruf von Funktionsblöcken in ST

Ein Funktionsblock in ST wird aufgerufen, indem man den Namen der Instanz des Funktionsblocks schreibt und anschließend in Klammer die gewünschten Werte den Parametern zuweist. Im folgenden Beispiel wird ein Timer aufgerufen mit Zuweisungen für dessen Parameter IN und PT. Anschließend wird die Ergebnisvariable Q an die Variable A zugewiesen.

Die Ergebnisvariable wird wie in AWL mit dem Namen des Funktionsblocks, einem anschließenden Punkt und dem Namen der Variablen angesprochen.

Beispiel:

```
Timer(IN := TRUE, PT := 300);
A := Timer.Q;
```

Auswertung von Ausdrücken

Die Auswertung eines Ausdrucks erfolgt durch Abarbeitung der Operatoren nach bestimmten Bindungsregeln. Der Operator mit der stärksten Bindung wird zuerst abgearbeitet, dann der Operator mit der nächststärkeren Bindung, usw., bis alle Operatoren abgearbeitet sind. Operatoren mit gleicher Bindungsstärke werden von links nach rechts abgearbeitet.

Nachfolgend finden Sie eine Tabelle der ST-Operatoren in der Ordnung ihrer Bindungsstärke:

Operation	Symbol	Bindungsstärke
Einklammern	(Ausdruck)	Stärkste Bindung
Funktionsaufruf	Funktionsname (Parameterliste)	
Negieren Komplementbildung	NOT	
Multiplizieren Dividieren Modulo AND	* / MOD AND	
Addieren Subtrahieren OR XOR	+ - OR XOR	
Vergleiche Gleichheit Ungleichheit	<,>,<=,>= = <>	Schwächste Bindung

10.6.2.2 Anweisungen

Return

Die RETURN-Anweisung kann man verwenden, um an des Ende des Programms zu springen, beispielsweise abhängig von einer Bedingung.

IF

Mit der IF-Anweisung kann man eine Bedingung prüfen und abhängig von dieser Bedingung Anweisungen ausführen.

Syntax:

Der Teil in geschweiften Klammern {} ist optional.

Wenn <Boolscher_Ausdruck1> TRUE ergibt, dann werden nur die <IF_Anweisungen> ausgeführt und keine der weiteren Anweisungen. Andernfalls werden die Boolschen Ausdrücke, beginnend mit <Boolscher_Ausdruck2> der Reihe nach ausgewertet, bis einer der Ausdrücke TRUE ergibt. Dann werden nur die Anweisungen nach diesem Boolschen Ausdruck und vor dem nächsten ELSE oder ELSIF ausgewertet. Wenn keine der Boolschen Ausdrücke TRUE ergibt, dann werden ausschließlich die <ELSE_Anweisungen> ausgewertet.

Beispiel:

```
IF temp < 17 THEN
  Bool1 := TRUE;
ELSE
  Bool2 := FALSE;
END IF;</pre>
```

CASE

Mit der CASE-Anweisung kann man mehrere bedingte Anweisungen mit derselben Bedingungsvariablen in ein Konstrukt zusammenfassen.

Syntax:

Eine CASE-Anweisung wird nach folgendem Schema abgearbeitet:

- Wenn die Variable in <Var1> den Wert <Wert i> hat, dann wird die Anweisung <Anweisung i> ausgeführt
- Hat <Var 1> keinen der angegebenen Werte, dann wird die <ELSE-Anweisung> ausgeführt.

- Wenn für mehrere Werte der Variablen, dieselbe Anweisung auszuführen ist, dann kann man diese Werte mit Kommatas getrennt hintereinander schreiben, und damit die gemeinsame Anweisung bedingen.
- Wenn für einen Wertebereich der Variablen, dieselbe Anweisung auszuführen ist, dann kann man den Anfangs- und Endwert getrennt durch zwei Punkte hintereinanderschreiben, und damit die gemeinsame Anweisung bedingen.

Beispiel:

```
CASE INT1 OF

1, 5:

BOOL1 := TRUE;
BOOL3 := FALSE;

2:

BOOL2 := FALSE;
BOOL3 := TRUE;

10..20:

BOOL1 := TRUE;
BOOL3:= TRUE;

BOOL3:= TRUE;

ELSE
BOOL1 := NOT BOOL1;
BOOL2 := BOOL1 OR BOOL2;

END_CASE;
```

FOR-Schleife

Mit der FOR-Schleife kann man wiederholte Vorgänge programmieren.

Syntax:

Der Teil in geschweiften Klammern {} ist optional. Die <Anweisungen> werden solange ausgeführt, solange der Zähler <INT_Var> nicht größer als der <END_WERT> ist. Dies wird vor der Ausführung der <Anweisungen> überprüft, so dass die <Anweisungen> niemals ausgeführt werden, wenn <INIT_WERT> größer als <END_WERT> ist. Immer, wenn <Anweisungen> ausgeführt worden ist, wird <INT_Var> um <Schrittgröße> erhöht. Die Schrittgröße kann jeden Integerwert haben. Fehlt sie wird diese auf 1 gesetzt. Die Schleife muss also terminieren, da <INT_Var> nur größer wird.

Beispiel:

```
FOR Zaehler :=1 TO 5 BY 1 DO
  Var1 := Var1 * 2;
END FOR;
```

REPEAT- Schleife

Die REPEAT-Schleife unterscheidet sich von den WHILE-Schleifen dadurch, dass die Abbruchbedingung erst nach dem Ausführen der Schleife überprüft wird. Das hat zur Folge, dass die Schleife mindestens einmal durchlaufen wird, egal wie die Abbruchbedingung lautet.

Syntax:

```
REPEAT
<Anweisungen>
UNTIL <Boolescher Ausdruck>
END REPEAT;
```


Die <Anweisungen> werden solange ausgeführt, bis <Boolescher Ausdruck> TRUE ergibt. Wenn <Boolescher Ausdruck> bereits bei der ersten Auswertung TRUE ergibt, dann werden <Anweisungen> genau einmal ausgeführt. Wenn <Boolescher_Ausdruck> niemals den Wert TRUE annimmt, dann werden die <Anweisungen> endlos wiederholt, wodurch ein Laufzeitfehler entsteht.

1 Information

Der Programmierer muss selbst dafür sorgen, dass keine Endlosschleife entsteht, indem er im Anweisungsteil der Schleife die Bedingung verändert, also zum Beispiel einen Zähler hoch- oder runterzählt.

Beispiel:

```
REPEAT
  Var1 := Var1 * 2;
  Zaehler := Zaehler - 1;
UNTIL
  Zaehler = 0
END REPEAT
```

WHILE- Schleife

Die WHILE-Schleife kann benutzt werden wie die FOR-Schleife, mit dem Unterschied, dass die Abbruchbedingung ein beliebiger boolescher Ausdruck sein kann. Das heißt, man gibt eine Bedingung an, die, wenn sie zutrifft, die Ausführung der Schleife zur Folge hat.

Syntax:

```
WHILE <Boolescher Ausdruck> DO
     <Anweisungen>
END WHILE;
```

Die <Anweisungen> werden solange ausgeführt, bis <Boolescher Ausdruck> FALSE ergibt. Wenn <Boolescher Ausdruck> bereits während der ersten Ausführung FALSE ergibt, dann werden <Anweisungen> genau einmal ausgeführt. Wenn <Boolescher_Ausdruck> niemals den Wert FALSE annimmt, dann werden die <Anweisungen> endlos wiederholt, wodurch ein Laufzeitfehler entsteht.

i Information

Der Programmierer muss selbst dafür sorgen, dass keine Endlosschleife entsteht, indem er im Anweisungsteil der Schleife die Bedingung verändert, also zum Beispiel einen Zähler hoch- oder runterzählt.

Beispiel:

```
WHILE Zaehler >0 DO
  Var1 := Var1 * 2;
  Zaehler := Zaehler - 1;
END WHILE
```

Exit

Wenn die EXIT-Anweisung in einer FOR-, WHILE- oder REPEAT-Schleife vorkommt, dann wird die innerste Schleife beendet, ungeachtet der Abbruchbedingung.

10.7 Sprünge

10.7.1 JMP

SK 54xE	SK 53xE	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
SK 34XE	SK 52xE	SN ZXXE	SK ZXXE-FDS	SK 190E	SK 175E-FDS

Unbedingter Sprung zu einer Sprungmarke.

Beispiel in AWL:

```
JMP NextStep (* Unbedingter Sprung zu NextStep *)
ADD 1
NextStep:
ST Value1
```

10.7.2 JMPC

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Х	Х

Bedingter Sprung (Jump Conditional) zu einer Sprungmarke. Ist das AE = TRUE dann springt die Anweisung JMPC zur angegebenen Sprungmarke.

Beispiel in AWL:

```
LD 10
JMPC NextStep (* AE = TRUE à Programm springt *)
ADD 1

NextStep:
ST Value1
```

10.7.3 JMPCN

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	Х	X	X	Χ	Х

Bedingter Sprung (Jump Conditional) zu einer Sprungmarke. JMPCN springt wenn das AE Register = FALSE ist. Ansonsten wird das Programm mit der nachfolgenden Anweisung fortgesetzt.

Beispiel in AWL:

```
LD 10
JMPCN NextStep (* AE = TRUE à Programm springt nicht *)
ADD 1
NextStep:
ST Value1
```

10.8 Typkonvertierung

10.8.1 BOOL_TO_BYTE

SK 54xE	SK 53xE	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
SK 34XE	SK 52xE	SK ZXXE	SK ZXXE-FDS	SK 190E	SK 175E-FDS

Konvertiert den Datentyp AE von BOOL zu BYTE. Ist das AE gleich FALSE, dann wird der Akku auf 0 konvertiert. Ist das AE gleich TRUE, dann wird der Akku auf 1 konvertiert.

Beispiel in AWL:

```
LD TRUE
BOOL_TO_BYTE (* AE = 1 *)
```

Beispiel in ST:

```
Ergebnis := BOOL TO BYTE(TRUE); (* Ergebnis = 1 *)
```

10.8.2 BYTE_TO_BOOL

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	X	X	Х
	BOOL BYTE	INT DINT]			

	BOOL	BYTE	INT	DINT
Datentyp		Х		

Konvertiert den Datentyp von BYTE zu BOOL. Solange das BYTE ungleich Null ist, gibt es immer ein TRUE als Konvertierungsergebnis.

Beispiel in AWL:

```
LD 10
BYTE_TO_BOOL (* AE = TRUE *)
```

Beispiel in ST:

```
Ergebnis := BYTE_TO_BOOL(10); (* Ergebnis = TRUE *)
```

10.8.3 BYTE_TO_INT

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp		Χ		

Konvertiert den Datentyp von BYTE zu INT. Das BYTE wird in den Low Teil des INT hineinkopiert und der High Teil vom INT wird 0 gesetzt.

Beispiel in AWL:

```
LD 10
BYTE_TO_INT (* Akku = 10 *)
```


Beispiel in ST:

```
Ergebnis := BYTE_TO_INT(10); (* Ergebnis = 10 *)
```

10.8.4 DINT_TO_INT

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	Х	Х	X

	BOOL	BYTE	INT	DINT
Datentyp				Х

Konvertiert den Datentyp von DINT zu INT. Dabei wird der High Teil vom DINT Wert nicht mit übernommen.

Beispiel in AWL:

```
LD 200000
DINT_TO_INT (* Akku = 3392 *)

LD DINT# -5000
DINT_TO_INT (* Akku = -5000 *)

LD DINT# -50010
DINT TO INT (* Akku = 15526 *)
```

Beispiel in ST:

```
Ergebnis := DINT_TO_INT(200000); (* Ergebnis = 3392 *)
Ergebnis := DINT_TO_INT(-5000); (* Ergebnis = -5000 *)
Ergebnis := DINT_TO_INT(-50010); (* Ergebnis = 15526 *)
```

10.8.5 INT_TO_BYTE

	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp			Х	

Konvertiert den Datentyp von INT zu BYTE. Dabei wird der High Teil vom INT Wert nicht mit übernommen. Vorzeichen gehen verloren, da der Typ BYTE vorzeichenlos ist.

Beispiel in AWL:

```
LD 16#5008
INT_TO_BYTE (* Akku = 8 *)
```

Beispiel in ST:

```
Ergebnis := INT_TO_BYTE(16\#5008); (* Ergebnis = 8 *)
```

10.8.6 INT_TO_DINT

SK 54xE SK 53xE SK 2xxE SK 2xxE-FDS SK 180E SK 155E-FD						
	SK 54xE	SK 53xE	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS

		SK 52xE			SK 190E	SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X
	BOOL BYTE	INT DINT				

Konvertiert den Datentyp von INT zu DINT. Das INT wird in den Low Teil des DINT hineinkopiert und der High Teil vom DINT wird 0 gesetzt.

Beispiel in AWL:

Datentyp

```
LD 10
INT_TO_DINT (* Akku = 10 *)
```

Beispiel in ST:

```
Ergebnis := INT_TO_DINT(10); (* Ergebnis = 10 *)
```

10.9 PLC Störmeldungen

Störmeldungen führen zum Abschalten des Gerätes, um einen Gerätedefekt zu verhindern. Bei PLC Störmeldungen wird die Abarbeitung der PLC gestoppt und die PLC geht in den Zustand "PLC-Error". Bei anderen Störmeldungen läuft die PLC weiter. Nach einer Quittierung des Fehlers startet die PLC wieder automatisch.

Beim PLC User Fault 23.X läuft die PLC weiter!

Anzeige in der SimpleBox		Störung Text in der ParameterBox	Ursache		
Gruppe	Detail in P700[-01] / P701		Abhilfe		
E022	22.0	Kein PLC – Programm	Die PLC wurde gestartet es befindet sich jedoch kein PLC Programm im FU - PLC Programm in das Gerät laden		
	22.1	PLC – Programm ist fehlerhaft	Die Checksummen Prüfung über das PLC Programm ergab einen Fehler Gerät neu starten (Power ON) und wieder versuchen - Alternative, PLC Programm neu laden		
_	22.2	Falsche Sprungadresse	Programmfehler, Verhalten wie im Fehler 22.1		
	22.3	Stack Überlauf	Es wurden in der Laufzeit des Programm mehr als 6 Klammerebenen geöffnet - Programm auf Laufzeitfehler überprüfen		
	22.4	Max. PLC Zyklen überschritten	Die angegebene max. Zykluszeit des PLC Programmes wurde überschritten - Zykluszeit anpassen oder Programm überprüfen		

Anzeige in der SimpleBox		Störung Text in der ParameterBox	Ursache
Gruppe	Detail in P700[-01] / P701		Abhilfe
	22.5	Unbekannter Befehlscode	Ein im Programm vorhandener Befehlscode kann nicht ausgeführt werden, da er unbekannt ist - Programmfehler, Verhalten wie im Fehler 22.1 - Version der PLC und die Version von NORD CON passen nicht zusammen
	22.6	PLC Schreibzugriff	Während eines laufenden PLC Programmes wurde der Programminhalt verändert
	22.9	PLC Sammelfehler	Die Fehlerursache kann nicht genau aufgelöst werden - Verhalten wie im Fehler 22.1
E023	23.0	PLC User Fault 1	Dieser Fehler kann durch das PLC Programm ausgelöst
	23.1	PLC User Fault 2	werden, um Probleme im Ablauf des PLC Programm nach außen zu signalisieren. Die Auslösung erfolgt über das
	23.2	PLC User Fault 3	Beschreiben der Prozessvariable "ErrorFlags".

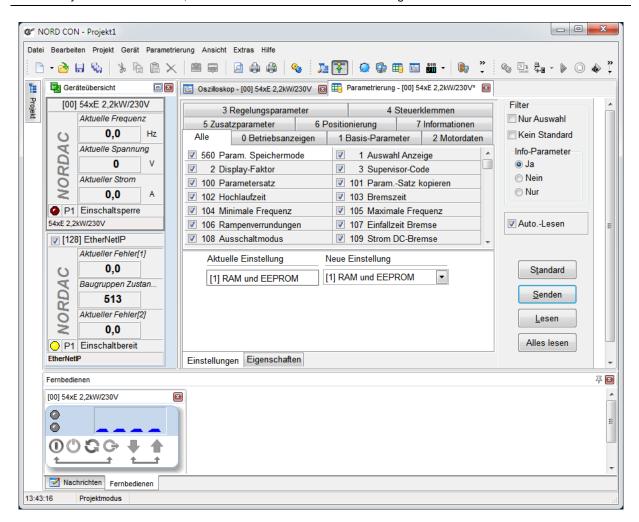
11 Projektmodus

11.1 Allgemein

Der Projektmodus ist eine Erweiterung des normalen Modus. Er ist standardmäßig deaktiviert und muss in den Einstellungen aktiviert werden. Der Modus erlaubt dem Benutzer ein Projekt zu verwalten. Es können Projekte geladen und gespeichert werden. Ein Projekt umfasst die Geräte mit ihren Daten (Parameter und PLC Programm), Links auf externe Parameterdateien oder PLC Programme sowie das Layout der Anwendung. Bei einem Neustart von NORD CON wird immer das zuletzt gespeicherte Projekt geladen. Konnte kein Projekt gefunden werden, wird ein neues Projekt angelegt. Der Projektmodus wurde für folgende Anwendung entwickelt:

- 11.2 "HMI"
- 11.3 "Sichern und Wiederherstellen"

Kategorie	Name	Beschreibung
Datei	Neues Projekt	Die Aktion legt ein leeres Projekt an.
	Projekt öffnen	Die Aktion öffnet einen Dateiauswahldialog und der Benutzer muss eine Projektdatei (*.ncpx) auswählen.
	Projekt speichern	Die Aktion öffnet einen Dateiauswahldialog und der Benutzer legt einen Namen für die Projektdatei (*.ncpx) fest. Anschließend wird das Projekt unter diesen Namen gespeichert.
	Alles speichern	Die Aktion speichert das Projekt unter den aktuellen Namen.
Projekt	Alle Daten senden	Die Aktion sendet alle Parameter und das PLC Programm zu den Geräten.
	Alle Daten lesen	Die Aktion lädt alle Parameter aus den Geräten und speichert sie in der Projektdatei. Zusätzlich wird das PLC Programm im Gerät mit dem im Projekt verglichen. Sind sie nicht identisch wird eine Warnung im Protokoll ausgegeben.
	Parameter entfernen	Die Aktion löscht die Parameter für das markierte Gerät aus dem Projekt.
	PLC Programm entfernen	Die Aktion löscht das PLC Programm für das markierte Gerät aus dem Projekt.
	PLC Programm hinzufügen	Die Aktion fügt für das markierte Gerät ein gespeichertes PLC Programm hinzu.
	Parameter exportieren	Die Aktion exportiert alle Parameter für das ausgewählte Gerät in eine Datei.
	PLC Programm exportieren	Die Aktion exportiert das PLC Programm für das ausgewählte Gerät in eine Datei.
PLC	Speichern	Die Aktion speichert das PLC in die Projektdatei.
	Speichern unter	Die Aktion öffnet ein Dateiauswahldialog und der Benutzer muss einen Dateinamen auswählen. Anschließend wird das PLC Programm in einer


Kategorie	Name	Beschreibung
		separaten Datei gespeichert.
Parametriere n	Speichern	Die Aktion speichert die Parameter in die Projektdatei.
	Speichern unter	Die Aktion öffnet ein Dateiauswahldialog und der Benutzer muss einen Dateinamen auswählen. Anschließend werden die Parameter in einer separaten Datei gespeichert.

11.2 HMI

Der Projektmodus eignet sich hervorragend für eine günstige Visualisierung. Der Anwender verbindet den PC mit dem System und startet die Gerätesuche (Bus-Scan Strg F5). Nachdem die Gerätesuche abgeschlossen wurde, kann der Anwender für die Geräte dem gewünschten Anzeigeelement, wie Parameterfenster, Oszilloskop oder Steuernfenster, auf dem Arbeitsbereich platzieren. Anschließend muss das Projekt gespeichert werden. Nach dem Öffnen des Projektes werden die Geräte und das Layout wiederhergestellt. Somit kann der Anwender immer mit der gleichen Oberfläche arbeiten.

1 Information

Beim Laden eines Projektes wird nicht geprüft, ob die im Projekt enthaltenen Geräte angeschlossen sind. Befinden sich andere Geräte am Bus, kann es zu Kommunikationsfehlern kommen. Bitte achten Sie darauf, wenn Sie den Systembus verwenden, dass für die Kommunikationsverbindung immer dasselbe Gerät verwendet wird.

11.3 Sichern und Wiederherstellen

Eine weitere Anwendungsmöglichkeit des Projektmodus ist das Sichern und Wiederherstellen von Parametern und PLC Programmen. Die Liste der verwendeten Geräte kann nach einer Gerätesuche (Busscan) weiter eingeschränkt werden. Durch das Deaktivieren des Gerätes in der Geräteübersicht kann ein Gerät vom Sichern und Wiederherstellen ausgeschlossen werden.

Die Vorgänge können einige Minuten in Anspruch nehmen, da je nach Anlage mehrere Geräte vorhanden sind. Der Fortschritt wird in einem separaten Fenster angezeigt. Während der Vorgänge kann mit NORD CON nicht gearbeitet werden.

1 Information

Beim Laden eines Projektes wird nicht geprüft, ob die im Projekt enthaltenen Geräte angeschlossen sind. Befinden sich andere Geräte am Bus, kann es zu Kommunikationsfehlern kommen. Bitte achten Sie darauf, wenn Sie den Systembus verwenden, dass für die Kommunikationsverbindung immer dasselbe Gerät verwendet wird.

Sichern

Nach einer Gerätesuche (Busscan) liest die Aktion "Alle Daten lesen" die Parameter aller gefundenen Geräte aus. Die Parameter werden zunächst erst in NORD CON gespeichert und müssen noch manuell in die Projektdatei gespeichert werden (Alles speichern). Für die Aktion "Alle Daten lesen" stehen dem Benutzer drei Optionen zur Verfügung. Diese Optionen können im Einstellungensdialog aktiviert oder deaktiviert werden.

Option	Beschreibung
Datensätze löschen	lst diese Option aktiviert, werden bei einem Abbruch der Funktion "Alle Daten lesen" die Datensätze aller im Projekt enthaltenen Geräte gelöscht. Ansonsten werden nicht alle Parameter ausgelesen und die Datenmenge in der Projektdatei ist unvollständig.
	lst diese Option aktiv, wird der Datensatz eines Gerätes gelöscht, wenn während der Funktion "Alle Daten lesen" ein Fehler aufgetreten ist.
	lst diese Option aktiv, wird der Datensatz eines Gerätes gelöscht, wenn beim Ausführen der Funktion "Alle Daten lesen" das Gerät nicht kommuniziert.

PLC Programme können in der aktuellen Version von NORD CON nicht ausgelesen werden. Aus diesem Grund werden bei der Aktion "Alle Daten lesen" die Programme von Gerät und Projektdatei verglichen. Sind sie nicht identisch, wird eine Warnung in NORD CON ausgegeben. Ist für ein Gerät kein PLC Programm gespeichert wird diese Aktion übersprungen.

Sind Parameter für ein Gerät in der Projektdatei gespeichert, wird das mit einem speziellen Gerätesymbol im Projektbau angezeigt. Dasselbe gilt für das PLC Programm. Das vorhanden sein der Gerätesymbole sagt jedoch nichts über die Aktualität und die Vollständigkeit der Daten aus. Die Parameter können nach dem Auslesen mit dem Parametereditor bearbeitet werden. Der Anwender wählt ein Gerät im Projektbaum aus und öffnet den Parametereditor (Parametrieren F7). Im Editor können die Parameter erneut gelesen oder editiert werden. Die Aktion "Speichern" speichert die Parameter des ausgewählten Gerätes im Projekt sowie das Projekt auf der Festplatte. Möchte man die Parameter in einer separaten Datei speichern, muss man die Aktion "Speichern unter" ausführen.

Information

Treten während der Aktion "Alle Daten lesen" Fehler auf, werden diese im Protokoll vermerkt und die Sicherung wird fortgesetzt. Alle im Protokoll vermerkten Parameter sind nicht in der Projektdatei gespeichert. Es wird empfohlen die Störung zu beseitigen und die Sicherung für das Gerät erneut auszuführen.

Wiederherstellen

Die Funktion kann nach dem Öffnen eines Projektes über das Hauptmenü ausgeführt werden. Hierfür werden die in der Projektdatei gespeicherten Parameter zu den Geräten gesendet. Standardmäßig werden immer alle Parameter zu den Geräten gesendet. In den meisten Fällen ist das aber überhaupt nicht sinnvoll und kostet nur Zeit. Um die Anzahl der Parameter zu verringern, muss der Anwender die Option "Nur freigegebene Parameter übertragen" aktivieren und im Parametereditor die gewünschten Parameter aktivieren.

Im zweiten Schritt werden die im Projekt gespeicherten PLC Programme geladen, übersetzt und ebenfalls zu dem Gerät gesendet. Das PLC Programm eines Gerätes wird wie im normalen Modus mit dem PLC Editor editiert. Beim Öffnen des Editors wird das PLC Programm automatisch aus der Projektdatei geladen. Nach dem Editieren kann das Programm mit der Aktion "Speichern" wieder in der Projektdatei gesichert werden. Möchte man das PLC Programm in einer separaten Datei speichern, muss man die Aktion "Speichern unter" ausführen.

1 Information

Tritt während eines Vorgangs ein Fehler auf, wird dieser im Protokoll vermerkt und der Vorgang wird fortgeführt. Alle im Protokoll vermerkten Parameter konnten nicht im Geräte gespeichert werden. Dasselbe gilt für die PLC Programme. Es wird empfohlen die Störung zu beseitigen und die Aktion nochmal zu starten.

11.4 Projektdownload

Der automatisierte Projektdownload ermöglicht über eine Batchdatei den Download von Parameter und PLC Programmen zu ein oder mehreren Geräten. Das Ergebnis des Transfers wird in einer Protokolldatei gespeichert und kann im Anschluss ausgewertet werden. Die Parameter und PLC Programme müssen zu vor in einem Projekt gespeichert werden. Hierfür muss in NORD CON der Projektmodus aktiviert werden. Nach der Gerätesuche werden alle gefunden Geräte im Projektbaum angezeigt. Jetzt kann man jedem ausgewählten Geräte Parameter und/oder ein PLC Programm zuweisen.

1 Information

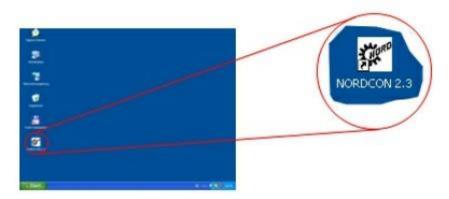
PLC Programme kann man nur Geräten mit PLC - Funktionalität zuweisen!

Für einen schnelleren Download des Projektes können nur die benötigten Parameter übertragen werden. Hierfür darf man im Parametereditor nur diesen Parametern einen Wert zuweisen.

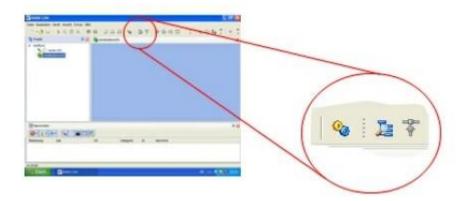
Zum Konfigurieren des Projektdownloads ist im Installationsverzeichnis von NORD CON eine Batchdatei abgelegt. Die Datei muss kopiert und entsprechend angepasst werden. Für die Funktion gibt es folgende Übergabeparameter:

Übergabeparameter	Beschreibung
	Dieser Übergabeparameter aktiviert den Projektdownload. Nach dem Gleichheitszeichen muss der Pfad zur Projektdatei eingetragen werden.
	Beispiel:
	"AUTODOWNLOAD=c:\Projekt_Starter.ncpx"
CONNECTIONSTRING=[ID=1,	Dieser Übergabeparameter legt die Kommunikationsparameter fest. Wird
PORTNR=[COMx (x=serial port	dieser Parameter nicht übergeben, werden die Einstellungen aus dem Projekt
number)], BAUDRATE=[baud rate]]	verwendet.
(Optional)	
	Beispiel:
	"CONNECTIONSTRING=ID=1,PORTNR=COM1, BAUDRATE=38400"

AUTOLOG=[log file]	Dieser Übergabeparameter legt den Pfad der Protokolldatei fest. Wird dieser
	Parameter nicht übergeben, wird keine Protokolldatei angelegt.



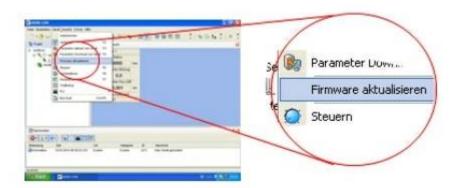
12 Firmware


12.1 So aktualisieren Sie die Firmware

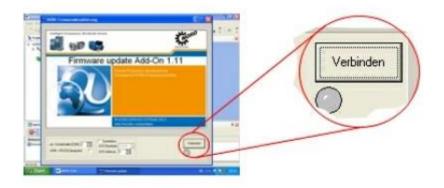
Folgende Schritte müssen ausgeführt werden:

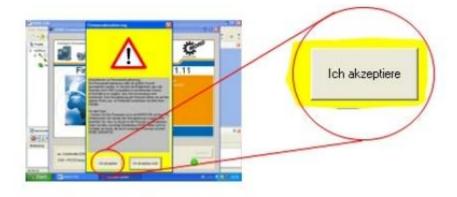
1.Starten Sie NORD CON

2.Führen Sie eine Gerätesuche aus

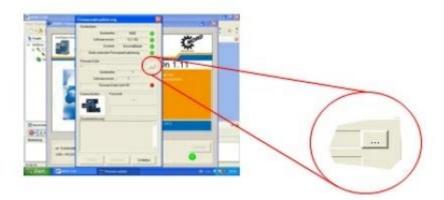


3. Markieren Sie das gewünschte Gerät im Projektbaum

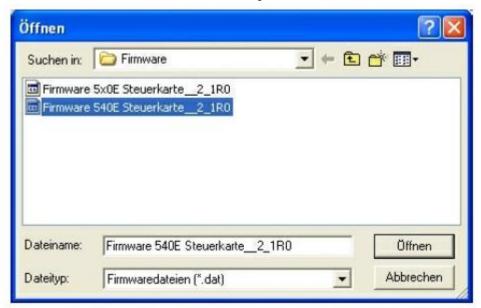



4.Starten Sie das Firmware-Update Programm über den Menüpunkt "Gerät -> Firmware aktualisieren"

5.Klicken Sie auf Verbinden



6.Lesen Sie den Warnhinweis gewissenhaft durch und bestätigen Sie mit der Schaltfläche "Ich akzeptiere"



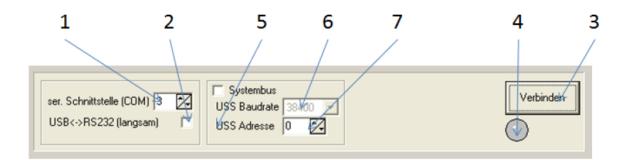
7. Wählen Sie mit Hilfe der Schaltfläche "..." eine Firmwaredatei aus

8. Wählen Sie die Firmware-Datei aus und bestätigen Sie mit "Öffnen"

9. Starten Sie den Firmwaretransfer über die Schaltfläche "Starten"

1 Information

Die Aktualisierung der Firmware kann nur ausgeführt werden, wenn das Gerät die Adresse 0 besitzt und die Baudrate 38400 bits/s eingestellt wurde.

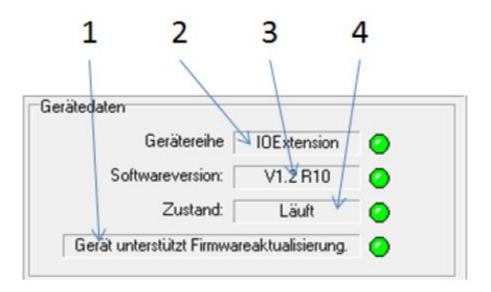

1 Information

Wurde ein Firmwaretransfer unterbrochen oder fehlerhaft ausgeführt, starten Sie das Gerät neu. Wird das Gerät anschließend bei einem Bus-Scan nicht gefunden, kann das Firmware-Update Programm (FirmwareUpd.exe) auch manuell gestartet werden. Das Programm befindet sich im Hauptverzeichnis von NORD CON.

12.2 Firmwareaktualisierungsprogramm

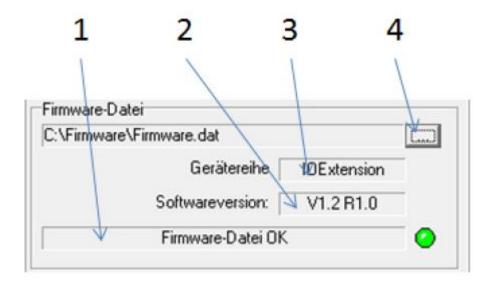
1. Einstellungen

Nr.	Beschreibung
1	In der Auswahlbox legt der Benutzer den COM-Ports des PCs fest, an dem das Gerät angeschlossen ist. Wurde das Programm über NORD CON aufgerufen, muss dieser Parameter nicht eingestellt werden.
2	Bei einigen USB nach RS232 Wandlern kann diese Einstellung eine stabilere Kommunikation gewährleisten. Wählen Sie diese Einstellung nur, wenn sie Probleme mit der Verbindung haben.
3	Die Schaltfläche "Verbinden" stellt eine Verbindung mit dem angeschlossenen Gerät her. Konnte ein Gerät gefunden werden, wird die LED (4) grün und das Firmwaredownload - Fenster wird geöffnet.
4	Die LED zeigt den Verbindungsstatus an. Grau - Es wurde noch keine Verbindung hergestellt. Grün - Das Programm ist mit einem Gerät verbunden. Rot - Es konnte kein Gerät gefunden werden.
5	Mit dieser Option wird die Aktualisierung der Firmware über den Systembus aktiviert.
6	In dieser Auswahlbox legen Sie die Übertragungsgeschwindigkeit zwischen PC und angeschlossen Gerät fest.
7	In diesem Eingabefeld legen Sie die gemappte USS Adresse des Gerätes fest.



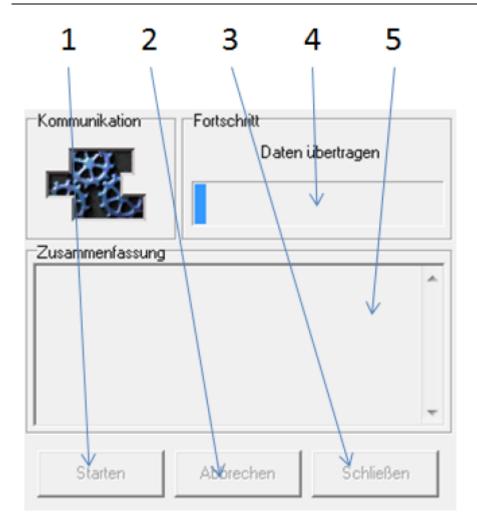
2. Gerätedaten

Nr.	Beschreibung
1	In diesem Feld wird angezeigt, ob das angeschlossene Gerät eine Firmwareaktualisierung unterstützt. Ist das nicht der Fall, ist die LED neben dem Feld Rot.
2	In diesem Feld wird die Gerätefamilie des angeschlossenen Gerätes angezeigt. Konnte ein Gerät nicht


Nr.	Beschreibung	
	erkannt werden, ist di	e LED neben dem Feld Rot und eine Firmwareaktualisierung ist nicht möglich!
3	In diesem Feld wird d	ie Versionsnummer des angeschlossenen Gerätes angezeigt.
4		er Zustand des angeschlossenen Gerätes angezeigt. Ist das Gerät freigegeben, ist Feld Rot und es ist keine Firmwareaktualisierung möglich!

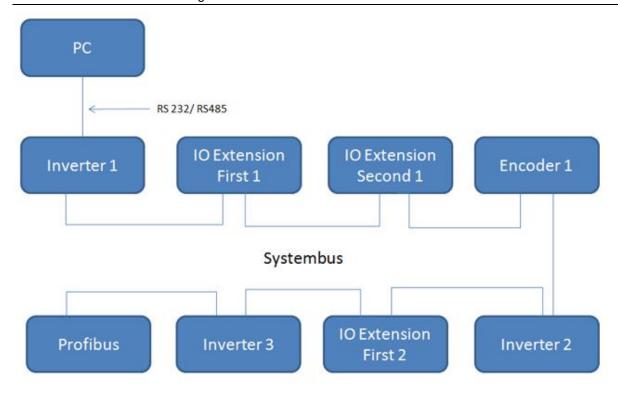
3. Firmware-Datei auswählen

Nr.	Beschreibung
1	In diesem Feld wird der Status der aktuell geladenen Firmware angezeigt. Wenn die Firmwaredatei nicht geladen werden kann oder die Firmware nicht zum angeschlossenen Gerät passt, ist die LED neben dem Feld Rot. Eine Firmwareaktualisierung ist dann nicht möglich.
2	In diesem Feld werden die Versionsinformationen der aktuell geladenen Firmware angezeigt.
3	In diesem Feld wird die unterstützte Gerätefamilie der aktuell geladenen Firmware angezeigt.
4	Durch Anklicken der Schaltfläche "" öffnet sich ein Dateiauswahldialog. In dem Fenster kann der Benutzer eine Firmwaredatei auswählen. Der Dateiname wird nach bestätigen mit "Öffnen" übernommen und in der Konfigurationsdatei des Programms gespeichert.



4. Firmware aktualisieren

Nr.	Beschreibung
1	Um die Firmwareaktualisierung zu starten, muss man die Schaltfläche "Starten" drücken. Ist die Schaltfläche nicht aktiv, kann die ausgewählte Firmware nicht in das Gerät geladen werden.
2	Nach dem Drücken der Schaltfläche "Abbrechen" wird eine gestartete Aktualisierung abgebrochen. Der Abbruch ist nur in der Initialisierungsphase möglich.
3	Das Download - Fenster kann nicht während einer Aktualisierung geschlossen werden. Vor oder nach einem Download kann der Benutzer durch Drücken der Schaltfläche "Schließen" die Aktualisierung beenden.
4	In der Fortschrittsanzeige werden der Verlauf der Aktualisierung sowie der aktuelle Status angezeigt.
5	Im Feld "Zusammenfassung" wird nach der Aktualisierung das Ergebnis angezeigt.



12.3 Firmwareaktualisierung über Systembus

Der Systembus ist ein von NORD entwickelt Bus auf Basis des CAN Busses. Der Bus ist für alle SK2xxE und SK5xxE mit interner CAN-Schnittstelle sowie für diverse Zusatzbaugruppen verfügbar. Es können bis zu vier Frequenzumrichter mit je 2 Zusatzbaugruppen und je einem CANopen Geber, sowie eine Busbaugruppe zeitgleich angeschlossen werden, sodass im max. Ausbau 17 Gerät am Systembus angeschlossen sind. Das für den Systembus verwendete Protokoll entspricht CANopen. Die CAN Adressen für die einzelnen Geräte sind im Systembus fest zugeordnet und können nicht nach Belieben vergeben werden.

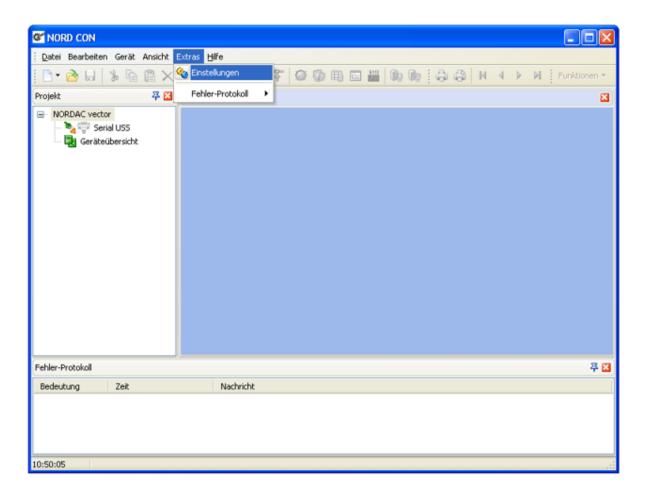
Alle am Systembus angeschlossen NORD Baugruppen können über einen Teilnehmer mit RS232/RS485 Schnittstelle über NORD CON visualisiert und parametriert werden. Hierfür werden die Kommunikationsanfragen über das an NORD CON oder Firmwareaktualisierungsprogramm angeschlossene Gerät getunnelt. Für die Tunnelung der Anforderungen wird das folgende Mapping-Verfahren verwendet:

USS Adresse	Baugruppe
0	Diese Adresse muss bei der Baugruppe eingestellt werden, an die NORD CON angeschlossen ist.
1	Frequenzumrichter 1 (CAN-ID: 32)
2	Frequenzumrichter 2 (CAN-ID: 34)
3	Frequenzumrichter 3 (CAN-ID: 36)
4	Frequenzumrichter 4 (CAN-ID: 38)
10	Zusatzbaugruppe 1 für Frequenzumrichter 1 (I/O-Extension)
11	Zusatzbaugruppe 1 für Frequenzumrichter 2 (I/O-Extension)
12	Zusatzbaugruppe 1 für Frequenzumrichter 3 (I/O-Extension)
13	Zusatzbaugruppe 1 für Frequenzumrichter 4 (I/O-Extension)
19	Gerät nach einer abgebrochenen Firmwareaktualisierung
20	Zusatzbaugruppe 2 für Frequenzumrichter 1 (I/O-Extension)
21	Zusatzbaugruppe 2 für Frequenzumrichter 2 (I/O-Extension)
22	Zusatzbaugruppe 2 für Frequenzumrichter 3 (I/O-Extension)

USS Adresse	Baugruppe
23	Zusatzbaugruppe 2 für Frequenzumrichter 4 (I/O-Extension)
30	Busbaugruppe

Die folgenden Geräte unterstützen das Tunneln der Firmwareaktualisierung:

Gerät	Version
SK 1xxE	alle
SK 2xxE	ab V1.3
SK 5xxE	ab V2.0
SK 540E	ab V2.0
SK TU4-DEV	ab V1.4
SK TU4-CAO	ab V2.2
SK TU4-PBR	ab V1.2
SK TU4-POL	alle
SK TU4-PNT	alle
SK TU4-IOE	ab V1.2
SK TU4-EIP	alle


Folgende Geräte unterstützen die Firmwareaktualisierung über Systembus:

Gerät	Version
SK 1xxE	alle
SK 540E	ab V2.0
SK TU4-DEV, SK CU4-DEV	ab V1.4
SK TU4-CAO, SK CU4-CAO	ab V2.2
SK TU4-PBR, SK CU4-PBR	ab V1.2
SK TU4-POL, SK CU4-POL	alle
SK TU4-PNT, SK CU4-PNT	alle
SK TU4-IOE, SK CU4-IOE	ab V1.2
SK TU4-EIP, SK CU4-EIP	alle

13 Einstellungen

Unter der Option "Extras/Einstellungen" kann man die Einstellungen von <%PROGRAMNAME%> anpassen. Die Einstellungen sind in folgende Rubriken unterteilt:

13.1 Oberfläche

In der Rubrik kann der Benutzer die Einstellungen der Benutzeroberfläche verändern.

Sprache

Mit der Option kann der Benutzer die Sprache der Oberfläche festlegen.

Andere Sprache für Parameter verwenden

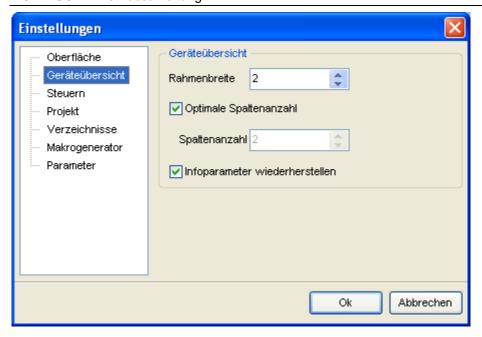
Durch die Auswahl der Option kann der Benutzer in der Auswahlbox "Parameter-Sprache" eine separate Sprache für die Parameternamen im Fenster "Parametrierung" auswählen.

Parametersprache

Mit der Option kann der Benutzer eine andere Sprache für die Parameternamen im Fenster "Parametrierung" auswählen. Diese Auswahl wird mit der Option "Andere Sprache für Parameter verwenden" aktiviert oder deaktiviert. Ist die Option deaktiviert, wird die Sprache der Oberfläche verwendet.

Fenstereinstellungen speichern

Durch die Aktivierung der Option werden die Fenstereinstellungen der Formulare (wie Position oder Größe) gespeichert und beim Öffnen wieder eingestellt.


Gerätespezifische Fernbedienfenster benutzen

Ist diese Option aktiviert, werden für jeden Gerätetyp spezielle "Fernbedienen" Fenster erzeugt. Ansonsten wird das Standardfenster verwendet.

13.2 Geräteübersicht

In der Rubrik kann der Benutzer die Einstellungen des Fensters "Geräteübersicht" anpassen.

Rahmenbreite

Mit dem Parameter kann der Benutzer die Rahmenbreite der Geräteanzeigen anpassen. Es kann ein Wert zwischen 0 und 10 Pixel eingestellt werden. Wird ein größerer oder kleinerer Wert eingetragen, wird automatisch der größte oder kleinste Wert verwendet.

Optimale Spaltenanzahl

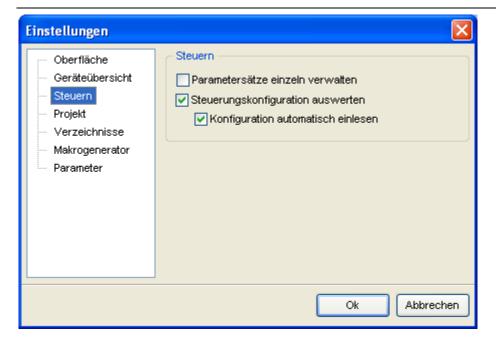
Ist diese Option ausgewählt, berechnet die Anwendung entsprechend der Fensterbreite und der Anzahl der Geräte die optimale Spaltenanzahl.

Spaltenanzahl

Mit diesem Parameter legt der Benutzer eine feste Anzahl von Spalten fest. Der Wert liegt zwischen 1 und 10. Wird ein größerer oder kleinerer Wert eingetragen, wird automatisch der größte oder kleinste Wert verwendet.

Achtung:

Dieser Parameter kann nur verändert werden, wenn die Option "Optimale Spaltenanzahl" nicht ausgewählt wurde.


Infoparameter wiederherstellen

Ist diese Option ausgewählt, werden die eingestellten Infoparameter der Geräteanzeigen gespeichert und beim einen Netzwerkscan oder einem Neustart der Anwendung wiederhergestellt.

13.3 Steuern

In der Rubrik kann der Benutzer spezielle Einstellungen zum Formular 5 "Steuerung" verändern.

Parametersätze einzeln verwalten

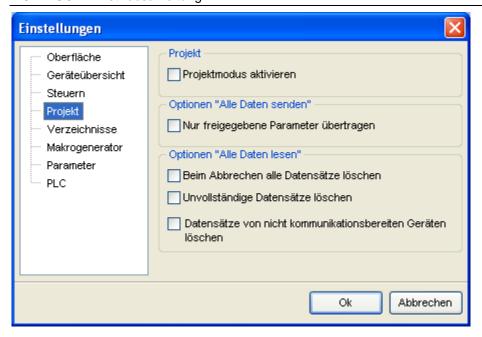
Durch die Aktivierung der Option werden die Soll- und Istwerte im Fenster "Steuern" getrennt verwaltet.

Steuerungskonfiguration auswerten

Die Option aktiviert oder deaktiviert die Auswertung der Steuerungskonfiguration. Ist diese Option aktiviert, werden nach dem Einlesen der Konfiguration einige Funktionen gesperrt oder freigegeben. Zusätzlich werden die Namen der parametrierten Soll- bzw. Istwertfunktionen in Klartext im Fenster angezeigt.

Konfiguration automatisch einlesen

Die Option aktiviert oder deaktiviert das automatische Einlesen der Konfiguration. Ist diese Option aktiviert, wird nach dem Fokussieren des Fensters die Steuerungskonfiguration neu eingelesen und ausgewertet.


Hinweis:

Die Funktion "Steuerungskonfiguration auswerten" steht nicht in alle Geräten zur Verfügung!

13.4 Projekt

In der Rubrik kann der Benutzer den Pfad für die Projektdatei festlegen. In dieser Datei werden Einstellungen wie z.B. benutzte Schnittstelle, Bus-Scan-Einstellungen, Geräte-Namen, etc. abgespeichert. Durch Auswahl einer vorhandenen Datei könne alte Einstellungen wieder geladen werden.

Projektmodus aktivieren

Mit dieser Option kann man den Projektmodus aktivieren oder deaktivieren. Im Projektmodus kann der Benutzer die Art und Anzahl der Geräte am Bus frei parametrieren. Die Geräteparameter sowie die Einstellungen der Anwendung werden in einer Projektdatei gespeichert.

Nur freigegebene Parameter übertragen

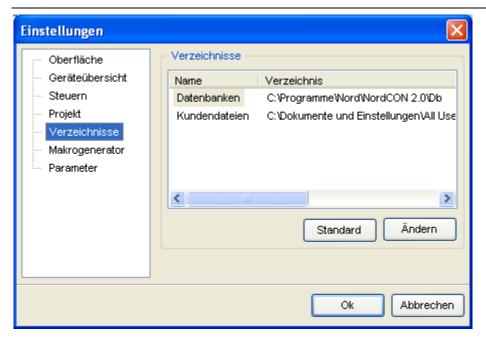
Ist diese Option aktiviert, werden bei der Funktion "Alle Daten senden", nur Parameter zum Gerät gesendet, die vom Benutzer freigegeben sind. Standardmäßig sind immer alle Parameter freigegeben. Die Freigabe der Parameter kann im Parametereditor verändert werden.

Beim Abbrechen alle Datensätze löschen

Ist diese Option aktiviert, werden bei einem Abbruch der Funktion "Alle Daten lesen" die Datensätze aller im Projekt enthaltenen Geräte gelöscht.

Unvollständige Datensätze löschen

Ist diese Option aktiviert, wird der Datensatz eines Gerätes gelöscht, wenn während der Funktion "Alle Daten lesen" ein Fehler aufgetreten ist.

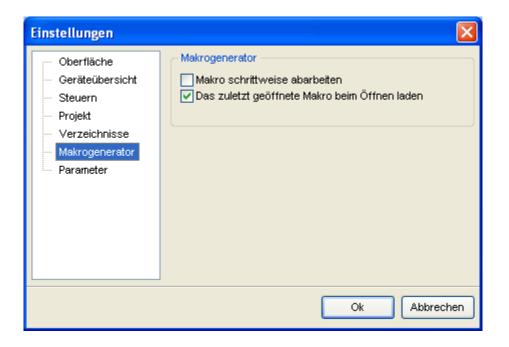

Datensätze von nicht kommunikationsbereiten Geräten löschen

Ist diese Option aktiviert, wird der Datensatz eines Gerätes gelöscht, wenn beim Ausführen der Funktion "Alle Daten lesen" das Gerät nicht kommunizieren konnte.

13.5 Verzeichnisse

In der Rubrik können die Verzeichnisse eingestellt werden, in denen sich die Parameterdatenbanken, Konfigurationsdateien, Makrodateien und internen Datenbanken befinden. Um einen der Pfade zu ändern, muss das gewünschte Verzeichnis in der Liste markiert werden. Mit einem Klick auf den Button "Ändern" kann man einen neuen Pfad auswählen. Mit Hilfe des Buttons "Standard" kann man für jede Kategorie das Standardverzeichnis eintragen.

Kundendateien


In diesem Verzeichnis werden alle kundenspezifischen Dateien, wie z.B. Makros oder Parameterdateien, abgelegt.

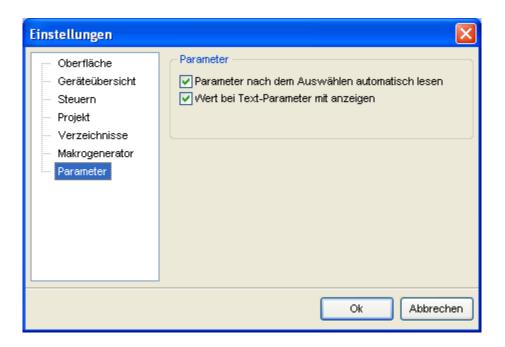
Interne Datenbanken

Diese Datenbanken werden für den internen Programmablauf benötigt. In ihnen ist die Parameterstruktur der einzelnen Gerätefamilien hinterlegt.

13.6 Makro-Editor

In der Rubrik kann der Benutzer die Einstellungen im Editor 8 "Makro-Editor" anpassen.

Makro schrittweise abarbeiten


Die Option aktiviert oder deaktiviert das schrittweise abarbeiten eines Makros. Ist diese Option aktiviert muss je Makroanweisung einzeln gestartet werden (Ablauf/Start).

Das zuletzt geöffnete Makro beim Öffnen laden

Die Option aktiviert oder deaktiviert, das beim Öffnen des Makrogenerators das zuletzt geöffnet Makro wieder geladen wird.

13.7 Parameter

In der Rubrik kann der Benutzer die Einstellungen des Fenster 4 "Parametrierung" anpassen.

Parameter nach dem Auswählen automatisch lesen

Die Option aktiviert oder deaktiviert das automatische Lesen eines Parameters nach dem Auswählen.

Wert bei Text-Parameter mit anzeigen

Die Option aktiviert oder deaktiviert, ob der Zahlenwert eines Parameters im Fenster "Parametrieren" zusätzlich zum Text angezeigt werden soll.

13.8 PLC

Alte Protokolleinträge vor dem Kompilieren löschen

Ist diese Option aktiviert, werden vor jedem Kompiliervorgang die alten Protokolleinträge gelöscht.

Beim Debuggen zum aktuellen Breakpoint springen

Ist diese Option aktiviert, wird die Zeile des aktuellen Breakpoints in den Sichtbereich verschoben.

14 Meldungen

14.1 Fehler und Hinweise

Bei allen Fehlern und Hinweisen erscheinen ein Text und eine Fehlernummer.

Die Meldungen haben folgende Bedeutung:

Nr.	Beschreibung
100	Parameter-Nr. unzulässig
101	Parameter-Wert nicht änderbar
102	Parameter-Grenzen überschritten
103	Sub-Index unzulässig
104	Kein Array-Parameter
105	Beschreibung nicht änderbar
106	Beschreibung nicht vorhanden
107	Empfangs-Time-Out
108	Sende-Time-Out
109	Empfangsdaten fehlerhaft
110	Antwort und Auftrag verschieden
200	Fehler: Öffnen der ser. Schnittstelle!
201	Fehler: Schließen der ser. Schnittstelle!
202	Erst alte Schnittstelle schließen!!
203	Schnittstelle nicht geöffnet!
204	Die Einstellungen des Kommunikationsmoduls konnten nicht gesetzt werden. Prüfen Sie ob die aktuelle Baudrate unterstützt wird.
205	Fehler Buffer-Speicher!
206	Fehler TimeOut-Einstellung!
207	Kommunikation nicht möglich!
208	Interner Objekt-Fehler!
210	Fehler beim Schreiben der Datei!
211	Telegramm konnte nicht erzeugt werden!
212	Keinen hochauflösenden Timer gefunden!
213	Kein Gerät gefunden!
214	Nur mit 16 Bit Sollwert möglich!

Nr.	Beschreibung
215	FU ist in Betrieb. Fenster schließen?
216	Die Aktualisierung der Firmware kann nur ausgeführt werden, wenn das Gerät die Adresse 0 besitzt!
217	Das Programm für die Aktualisierung der Firmware konnte nicht gestartet werden! Bitte installieren Sie NORD CON neu, um das Problem zu beheben.
218	Bitte fügen Sie erst ein Kommunikationsmodul ein!
219	Möchten Sie die Datei in die Online-Ansicht importieren?
220	An dieser Stelle kann kein Gerät hinzugefügt werden!
221	Es wurde mehr als 1 Gerät am Bus gefunden. Ein Update könnte zu Problemen führen. Möchten Sie trotzdem fortfahren?
222	Es kommt zur Inkonsistenz der Steuerdaten, wenn Sie Makros und Steuerfenster gleichzeitig benutzen. Bitte schließen Sie alle Steuerfenster oder den Makroeditor.
223	Der Transfer kann nicht gestartet werden, da der Parametereditor geöffnet ist! Bitte schließen Sie den Editor und starten Sie die Funktion erneut.
224	Die Onlinehilfe konnte nicht gefunden werden! Bitte installieren Sie NORD CON neu, um das Problem zu beheben.
225	Das Gerät kann nicht getrennt werden, da noch mindestens ein Fenster des Gerätes geöffnet ist.
226	Die Datei kann nicht geöffnet werden. Das Format der Datei ist unbekannt.
227	Die Datei konnte nicht gelesen werden!
228	Das Format der Datei ist nicht bekannt!
229	Die Datei wurde vom Benutzer verändert!
230	Die Aktion kann nicht ausgeführt werden, da das Gerät nicht verbunden ist!
231	Die Einstellungen wurden verändert. Möchten Sie die Änderungen speichern?
232	Ihr Computer unterstützt die Anzeige von chinesischen Zeichen nicht, deshalb können Darstellungsfehler auftreten!
233	Der Wert kann nicht in eine INT16 konvertiert werden!
234	Die aktuelle Version des Gerätes unterstützt kein Firmwareupdate über den Systembus!
235	Die aktuelle Version der Technologiebox unterstützt kein Firmwareupdate über den Systembus!
236	Das Gerät an Adresse 0 unterstützt kein Firmwareupdate über den Systembus!
237	Die PLC ist nicht registriert! Bitte kontaktieren Sie den Support (+49 (0)180 500 61 84).
238	Der Registrierungscode ist nicht korrekt! Bitte kontaktieren Sie den Support (+49 (0)180 500 61 84).
239	Der Firmwaredownload kann nur mit einer Baudrate von 38400 baud ausgeführt werden!
240	Der Report kann nicht gedruckt werden, da kein Drucker installiert ist!
241	Die Datei konnte auf Ihrem System nicht gefunden werden!
242	Die aktuelle Version der Technologiebox TU3 unterstützt kein Firmwareupdate!
243	Es kann kein Gerät mehr hinzugefügt werden!

Nr.	Beschreibung
244	Das Projekt hat sich geändert! Möchten Sie das Projekt speichern?
245	Die Verbindung zum Gerät %s kann nicht aufgebaut werden!
246	Für das Gerät %s konnte kein PLC Programm gefunden werden!
247	Für das Gerät %s konnte kein Parameter gefunden werden!
248	Der Projekttransfer wurde vom Benutzer abgebrochen!
249	Während des Projekttransfers ist mindestens ein Fehler aufgetreten!
250	Während des Projekttransfers ist mindestens eine Warnung aufgetreten!
251	Die eingegebene IP Adresse ist nicht gültig!
252	Es kann kein Gerät mehr hinzugefügt werden!
253	Die Datei ist defekt oder wurde manipuliert!
254	Das Firmwareupdate ist im Modus "USS über TCP" nicht möglich!
255	Die Änderungen erfordern einen Busscan! Möchten Sie die Änderungen übernehmen?
256	Die Projektdatei konnte nicht gefunden werden!
257	Bitte fügen Sie zuerst eine Busbaugruppe ein!
258	Es können nicht alle Einstellungen auf die ausgewählte Busbaugruppe übertragen werden! Möchten Sie fortfahren?
259	Ein Fehler ist während des Schreibvorgangs aufgetreten!
260	PLC Programm für das Gerät %s ist nicht korrekt!
261	Es wurde noch keine Projektdatei erstellt! Möchten Sie das Projekt jetzt speichern?
262	Die eingegebene IP Adresse wird schon verwendet!
263	Das Verzeichnis konnte nicht gefunden werden!
264	Text konnte nicht in ein Byte-Array umgewandelt werden!
265	USS Telegramm ist nicht korrekt!
266	Das PLC Programm kann nur zum Gerät geladen werden!
267	Möchten Sie das vorhandene PLC Programm überschreiben?
268	Das PLC Programm ist gesichert und kann nur zum Gerät geladen werden!
269	Sie haben die Kommunikationsart ändern. Alle Geräte werden aus der Liste gelöscht! Möchten Sie fortfahren?
300	Der Pfad für die interne Datenbank muss korrigiert werden!
301	Der Pfad für die interne Datenbank ist nicht korrekt. NORD CON wird jetzt beendet
302	Fehler beim Öffnen der Datenbanken!
303	FU-Typ in der Datenbank nicht kompatibel!
304	Anderer FU-Typ in der Datenbank !

Nr.	Beschreibung
305	Aktuelle Datenbank speichern?
306	Datenbank kann nicht geöffnet werden!
307	Unerlaubter Pfad!
308	Datenbank kann nicht gespeichert werden!
309	Alle Parameter sofort auslesen?
310	NORD CON bitte aktualisieren! Einwandfreie Parametrierung ist nicht garantiert.
311	Drucker ist nicht korrekt installiert!
312	Nur 1 Parameterfenster zurzeit erlaubt. Geöffnetes Fenster zeigen?
313	Zum Beenden des Programms muss das Parameterfenster geschlossen werden!
314	Zum Durchführen des Busscans muss das Parameterfenster geschlossen werden!
315	Ein Parametervergleich kann nur als PDF gespeichert werden.
316	Die Parameter wurden noch nicht dauerhaft im Gerät gespeichert. Möchten Sie dennoch schließen?
317	Die Startadresse darf nicht größer als die Endadresse sein!
318	Nicht alle i-Parameter sind aktuell. Bitte "Alles lesen" ausführen.
319	Es wurden noch nicht alle geänderten Werte übertragen!
320	Nicht alle i-Parameter sind ausgewählt. Bitte Filter ändern!
400	Die Datei konnte nicht geladen werden, da die Dateiversion unbekannt ist!
401	Die Datei konnte nicht geladen werden, da das Dateiformat unbekannt ist!
402	Die Datei wurde vom Benutzer verändert!
403	Fehler beim Öffnen der Datei!
405	Keine Makro-Datei!
406	Die Makro-Liste ist leer!
407	Makro-Liste ausgeführt!
408	Sprungziel nicht gefunden!
409	Die Funktion kann nicht ausgeführt werden, weil der Scheduler gestartet wurde.
410	Möchten Sie die Änderungen im Makro speichern?
411	Die Datei wurde vom Benutzer verändert! Möchten Sie die Datei öffnen?
500	Nur die Einstellungen laden?
501	Die Gerätetypen sind unterschiedlich? Möchten Sie die Datei öffnen?
502	Die Datei konnte nicht geöffnet werden, da die Version des Dateiformats unbekannt ist!
503	Die Datei konnte nicht geöffnet werden, da das Dateiformat unbekannt ist!
504	Die Datei wurde vom Benutzer verändert! Möchten Sie die Datei öffnen?
600	Die Steuerung des Gerätes ist aus folgendem Grund eingeschränkt oder nicht möglich: das Steuerwort

Nr.	Beschreibung
	(P509) ist nicht für USS konfiguriert!
601	Die Steuerung des Gerätes ist aus folgendem Grund eingeschränkt oder nicht möglich: die Sollwertquelle 1 (P510.0) ist nicht für USS konfiguriert!
602	Die Steuerung des Gerätes ist aus folgendem Grund eingeschränkt oder nicht möglich: die Sollwertquelle 2 (P510.1) ist nicht für USS konfiguriert!
603	Die Steuerung des Gerätes ist aus folgenden Gründen eingeschränkt oder nicht möglich: das Steuerwort (P509) und die Sollwertquelle 1 (P510.0) sind für USS nicht konfiguriert!
604	Die Steuerung des Gerätes ist aus folgenden Gründen eingeschränkt oder nicht möglich: das Steuerwort (P509) und die Sollwertquelle 2 (P510.1) sind für USS nicht konfiguriert!
605	Die Steuerung des Gerätes ist aus folgenden Gründen eingeschränkt oder nicht möglich: die Sollwertquelle 1 (P510.0) und 2 (P510.1) sind für USS nicht konfiguriert!
606	Die Steuerung des Gerätes ist aus folgenden Gründen eingeschränkt oder nicht möglich: das Steuerwort (P509), die Sollwertquelle 1 (P510.0) und 2 (P510.1) sind für USS nicht konfiguriert!
700	Die Aktion kann nicht ausgeführt werden, da die Verbindung zum Gerät gestört ist!
701	Die Aktion kann nicht ausgeführt werden, weil der Zugriff gesperrt ist!
800	Die Aktion "Parameter übertragen" wurde erfolgreich ausgeführt.
801	Während der Aktion "Parameter übertragen" sind Fehler aufgetreten!
802	Die Aktion "Parameter übertragen" wurde vom Benutzer abgebrochen!
803	Während der Aktion "Parameter übertragen" sind Fehler aufgetreten! Möchten Sie speichern?
804	Die Aktion "Parameter übertragen" wurde vom Benutzer abgebrochen! Möchten Sie speichern?
805	Es wurden Unterschiede festgestellt! Möchten Sie den Report sehen?
806	Die Erstellung des Reports wurde vom Benutzer abgebrochen!
807	Die Verbindung zu den Geräten wird jetzt neu aufgebaut! Möchten Sie fortfahren?
808	Ein Parameter ist nicht vorhanden!
809	Parametergrenze wurde überschritten!
810	Parametergrenze wurde unterschritten!
811	Es ist ein Fehler beim Import der Motordaten aufgetreten!
900	Es können maximal 5 Variablen in die Beobachtungsliste eingetragen werden!
901	Die Datei muss gespeichert werden, bevor man sie übersetzen kann. Möchten Sie eine neue Datei anlegen?
902	Die Datei konnte nicht geöffnet werden, da das Dateiformat unbekannt ist!
903	Die Datei konnte nicht gelesen werden!
904	Die Datei wurde vom Benutzer verändert! Möchten Sie die Datei öffnen?
905	Die Funktion ist noch nicht implementiert!
906	Das PLC-Programm muss vor dem Programmieren gespeichert werden!
907	Das PLC-Programm wurde geändert! Möchten Sie speichern?

NORD CON - Betriebsanleitung

Nr.	Beschreibung
908	Die Einstellungen haben sich geändert! Möchten Sie speichern?
909	PLC Format 1.0 wird nicht unterstützt.
910	Das PLC Programm konnte nicht gespeichert werden!
1100	Alle Datensätze wurden gelöscht (Benutzerabbruch)!
1101	Ein unvollständiger Datensatz wurde für das Gerät gelöscht!
1102	Ein unvollständiger Datensatz wurde für das Gerät gespeichert.
1103	Datensatz von nicht kommunikationsbereiten Gerät wurde gelöscht
1104	Es wurden keine Parameter für das Gerät gespeichert.

15 Getriebebau Nord

Getriebebau NORD liefert leistungsstarke mechanische und elektrische Antriebskomponenten aus einer Hand - weltweit! Mit Vertretungen in bisher 48 Ländern der Welt bieten wir Antriebe in folgenden Ausführungen an: Stirnrad-, Flach-, Kegelrad-, Schnecken- und Planetengetriebe für Leistungsbereiche von 0,12 kW bis 200 kW und für Drehmomente von 10 Nm bis 60.000 Nm.

Überall vor Ort

Neben unserem Hauptsitz in Bargteheide bei Hamburg sind wir in über 60 Ländern der Welt mit Montagewerken und Servicestützpunkten vertreten. Mehr als 3,100 Mitarbeiter der Unternehmensgruppe sorgen für minimale Lieferzeiten und maximale Serviceleistungen in jedem Winkel dieser Erde. Egal wann und wo Sie uns benötigen - wir lassen Sie nicht im Stich.

Alles in Bewegung setzen

Mit unseren leistungsstarken Antriebslösungen setzen wir selbst die "Goliaths" dieser Welt in Bewegung: riesige Krane in Hafenanlagen oder bewegliche Dachkonstruktionen in modernen Sportstadien, Gepäckförderbänder in Flughäfen oder Gondelbahnen im Skigebiet - NORD mobilisiert sie alle und unter allen Umständen.

Motor des Fortschritts

Unsere Produkte verkörpern eine innovative Synthese aus kompakter Mechanik und intelligenter Elektronik. Hochwertige Getriebe und Getriebemotoren, Frequenzumrichter, Servoregler und Peripherietechnik - wir entwickeln, produzieren und vertreiben das komplette Programm mechanischer und elektronischer Antriebskomponenten in einem fairen Preis-/Leistungsverhältnis.

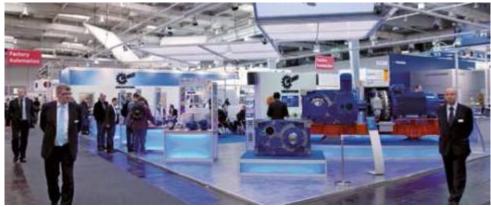
Gemeinsam viel bewegen

Unsere hohen Qualitäts- und Servicestandards resultieren aus konsequenter Kundenorientierung. Durch den Input der Anwender entwickeln wir passgenaue Produkte. Dabei haben Innovation und Kreativität für uns keinen Selbstzweck - wir schaffen Antriebslösungen mit klarer Nutzenorientierung. Denn unsere Kunden stehen am Anfang und am Ende der Wertschöpfungskette.

15.1 Unternehmensgeschichte

Seit der Gründung im Jahre 1965 verfolgen wir ein konsequentes Konzept, das sich an den Wünschen unserer Kunden orientiert.

1977 Aufbau eines modernen Zahnradwerkes


1979 Gründung von Tochterunternehmen weltweit

1980 Einführung der Blockgehäusekonstruktion bei allen Getrieben

1983 Aufbau einer eigenen Elektromotorenfertigung

1985 Aufbau der Fertigung von Frequenzumrichtern

1992 Aufbau einer Fertigung für Guß- und Stahlbearbeitung in Gadebusch

1997 Aufbau einer eigenen Motorenfertigung in Italien

1998 Aufbau eines Montagewerkes in Frankreich

2000 Aufbau von Montagewerken in Großbritannien und Österreich

2001 Aufbau eines Montagewerkes in China

2002 Fertigstellung des 3.Bauabschnittes in Gadebusch (ca. 7.200 m²)

2003 Aufbau eines Tochterunternehmens in Rußland

2004 Neubau eines Motorenwerkes in Italien

2009

2012

2005 40 Jahre Getriebebau NORD Einweihung des Hochregallagers am Standort Bargteheide Neubau eines Montagewerkes in Suzhou, China

2006 Eröffnung des neuen Produktionswerkes für elektronische Produkte in Aurich, Deutschland

2007 Aufbau von Montagewerken in Indien und Tschechien

Ausbau des Standorts Bargteheide:

- Bau eines Parkhauses

Ausbau des Standorts Bargteheide:

- Aufbau einer Montage für Industriegetriebe
 - Verdoppelung der Fläche vom Hochregallager

NORD DRIVESYSTEMS feiert die Einweihung des

vierten Bauabschnitts des Produktionswerks in Gadebusch und

2011 das 25-jährige Jubiläum von NORD GEAR Ltd. in Brampton, Kanada. In China feiert NORD die Eröffnung eines zweiten Werkes in Tianjin, ca. 100 km südöstlich von Beijing und auf dem fünften Kontinent eröffnet in Darwin, die Tochtergesellschaft NORD Australien.

Derzeit ist NORD DRIVESYSTEMS weltweit mit 35 Tochtergesellschaften weltweit präsent. Ergänzt wird das NORD-Vertriebs- und Servicenetz durch Vertriebs- und Servicepartner in mehr als 60 Ländern. Mit einem hochmotivierten Team von Mitarbeitern und einem kompletten Spektrum an technologisch und qualitativ hervorragenden Produkten der Antriebstechnik ist das Unternehmen bestens gerüstet für die

qualitativ hervorragenden Produkten der Antriebstechnik ist das Unternehmen bestens gerüstet für die Herausforderungen der Zukunft.

2013 Neubau einer weiteren Produktionsstätte in Suzhou

2014 Modernisierung des Servicebereiches und der Lackieranlage im Hauptstandort Bargteheide.

2015 - 50 jähriges Firmenjubiläum

- Neubau eines Bürogebäudes

15.2 Frequenzumrichter

15.2.1 SK 135E

SK 135E - Dezentraler Motorstarter von 0,25 bis 7,7 KW

Viele Einsatzbereiche, unter anderem in der Fördertechnik, erfordern ein elektronisches Starten und Stoppen der Antriebe. Hierfür eignet sich der Motorstarter SK 135E. Aufgrund seiner Flexibilität sind nicht nur reine Motorstartfunktionen, sondern auch ein Sanftanlauf oder ein Reversierbetrieb möglich. Umfangreiche Überwachungsfunktionen schützen z.B. vor Überhitzung. Durch die I2t-Auslöse-Charakteristik kann ein Motorschutzschalter eingespart werden. Durch das integrierte Netzfilter wird der Motorstarter SK 135E, bei Motormontage, höchsten EMV Ansprüchen gerecht.

Eigenschaften und Merkmale

- Sanftanlauf-Funktionalität
- Reversier-Funktionalität
- · Motor- oder Wandmontage
- IP55 (optional IP66)
- Leistungsbereich: 3~ 200 ... 240V von 0,25 kW bis 4,0 kW3~ 380 ... 500V von 0,25 kW bis 7,5 kW
- · Ansteuerung und Anschluss einer elektromechanischen Bremse
- Integriertes Netzfilter (EMV Klasse C1 / C2)
- 2 Digitale Eingänge
- · 2 Digitale Ausgänge
- Temperaturfühler-Eingang (TF+/TF-)
- RS232 Schnittstelle über RJ12-Stecker
- Optional ATEX Zone 22 3D (in Vorbereitung)

Sie finden weitere Informationen zum Motorstarter SK 135E hier.

15.2.2 SK 180E

SK 180E – Kostengünstiger dezentraler Frequenzumrichter von 0,25 bis 2,2 KW

Der SK 180E ist die Antwort für alle Anwendungen im kleineren Leistungsbereich, wo eine Drehzahlregelung die Hauptaufgabe darstellt. Bewährtes NORD Know-how – wie die sensorlose Stromvektor-Regelung – kommt ebenso zum Einsatz. Seine Qualität beweist der SK 180E auch durch seine EMV Klasse, die bei Frequenzumrichtern seinesgleichen sucht. Dadurch kann ein motormontierter Frequenzumrichter mit integriertem Netzfilter selbst in Wohnumgebung (Klasse C1) eingesetzt werden.

- Eigenschaften und Merkmale
- Effizienter dezentraler Frequenzumrichter für einfache Anwendungen mit Drehzahlregelung.
- Motor-, oder Wandmontage
- IP55 (optional IP66)
- Verfügbarer Leistungsbereich (BG I)1~ / 3~ 200 ... 240V von 0,25 kW bis 0,55 kW3~ 380 ... 480V von 0,25 kW bis 1,1 kW
- Integriertes Netzfilter (EMV Klasse C1 / C2)
- 2 Analoge Eingänge
- 3 Digitale Eingänge
- 2 Digitale Ausgänge
- Temperaturfühler-Eingang (TF+/TF-)
- RS232/RS485 Schnittstelle über RJ12-Stecker
- zugelassen für den Wohnbereich (bei motormontierter Ausführung)
- "Steckdosentauglich"
- Optional ATEX Zone 22 3D

15.2.3 SK 200E

Der Frequenzumrichter SK 200E für dezentrale Vielfalt mit System von 0,25 bis 22,0 KW

Nach langjähriger Erfahrung mit motoraufgebauten Umrichtern hat NORD mit dem Frequenzumrichter SK 200E eine Gerätereihe in den Markt eingebracht, die ein großes Spektrum von Lösungen der dezentralen Antriebstechnik ermöglicht. Die robusten, zuverlässig und wirtschaftlich arbeitenden Systeme eignen sich für weitläufige Anlagen wie z.B. Förderstrecken und wurden speziell auf preislich sensible Marktsegmente optimiert. In Analogie zur Frequenzumrichter Schaltschrank-Familie SK 500E steht eine anwendungsgerechte Performance-Stufung zur Verfügung, mit der gleichermaßen hochwertige Funktionalitäten zur Verfügung stehen. Typische Merkmale für dezentrale Komponenten wie Robustheit, Einbindung von Systemsteckverbindern, schnelle Austauschbarkeit sowie dezentrale Module für Kommunikation und I/O-Aufnahme ermöglichen eine konzeptionelle Ausstattung von verteilten Antriebseinheiten in der Feldebene.

Lieferumfang - Frequenzumrichter SK 200E:

- 1~ 115 V 0,25 0,75 kW
- 1~ 230 V 0,25 1,1 kW
- 3~ 230 V 0,25 11,0 kW
- 3~ 480 V 0,55 22,0 kW
- Wandmontierte Ausführung
- Dezentrale Module (auch mit Gateway-Funktionalität)

Schutzart IP55 im Standard. Optional:

- BG1 3: IP66 (Komponenten mit "C"= coated/beschichtet)
- BG4: Komponenten mit "C"= coated/beschichtet unter Beibehaltung der Schutzart IP55
- BG1 3: ATEX Zone 22, 3D oder raue Umgebungsbedingungen

Basisgerät - Frequenzumrichter SK 200E / SK 205E

- Hochwertiges Regelverfahren durch sensorlose Stromvectorregelung (ISD)
- integriertes 24V-Netzteil (SK 200E)
- Externe 24V-Versorgung für die Steuerkarte (SK 200E BG4 und SK 205E)
- 4 Steuereingänge, parametrierbar auf verschiedene digitale Funktionen
- 1 bzw. 2 Analogeingänge (SK 200E)
- integrierte Bremsensansteuerung für mechanische Haltebremse (SK 200E BG4 und SK 205E)
- Von außen einsehbare Status-LEDs (Signalzustand der Steuereingänge) (SK 200E BG4 und SK 205F)
- 2 von außen einstellbare Sollwert-Potentiometer (SK 200E BG4 und SK 205E
- Steckbarer Speicherbaustein (EEPROM)
- Automatische Motorparameteridentifikation
- Vier Parametersätze, online umschaltbar
- Inkrementalgeber-Auswertung (HTL)
- 4Q-Betrieb möglich durch optionalen Bremswiderstand

- · PI-Regler und Prozessregler
- Diagnose-Schnittstelle RS 232 (RJ12)
- Motorpotifunktion
- Positioniersteuerung POSICON

Frequenzumrichter SK 210E / SK 215E

- Basisausstattung wie beim Frequenzumrichter SK 200E / SK 205E
- Sicherheitfunktion "Sicherer Halt" nach EN 954-1 (EN 13849-1) bis max. Kat.4, Stop-Kategorie 0 und 1

Frequenzumrichter SK 220E / SK 225E

- Basisausstattung wie beim Frequenzumrichter SK 200E / SK 205E
- · AS-Interface Schnittstelle on board

Frequenzumrichter - SK 230E / SK 235E

- Basisausstattung wie beim Frequenzumrichter SK 200E / SK 205E
- Sicherheitfunktion "Sicherer Halt" nach EN 954-1 (EN 13849-1) bis max. Kat.4, Stop-Kategorie 0 und 1
- · AS-Interface Schnittstelle on board

Weitere Informationen finden Sie unter http://www.sk200e.de

15.2.4 SK 500E

Leistungen: 0,25 2,2 kW

1/3 AC 200 ... 240 V 3,0 18,5 kW

3 AC 200 ... 240 V 0,55 90 kW 3 AC 380 ... 480 V 0,25 160kW

Ausgangsfrequenz: 0 ... 400 Hz

Handbücher

Handbuch SK 5xxE Handbuch SK 54xE

Stichwortverzeichnis

A	Ersetzen15
abdocken27	Erste Schritte9
Ablauf72	Erstellen von neuen Anweisungen71
Ablauf abbrechen73	Exportieren13
Ablauf starten72	Extras19
Alle gefundenen Geräte anhalten10, 34	F
Alles markieren15	Fehler205
andocken27	Fenstereinstellungen speichern 52, 198
Ansicht18, 41	Fernbedienen12, 16, 19, 26, 83
Anweisung nach oben verschieben70	Filter 40
Anweisung nach unten verschieben71	Firmwareaktualisierung über Systembus 195
Arbeiten mit NORD CON9	Firmwareaktualisierungsprogramm 192
Arbeitsbereich12	G
Ausschneiden15	Gerät 16, 22, 83
Ausschneiden von Anweisungen70	Geräteübersicht199
Automatische Gerätesuche nach Programmstart10, 34	н
В	Hardware simulieren33
Baudrate10, 34	Hauptfenster12
Bearbeiten15	Hauptmenü12, 13, 16, 18, 19, 20, 83
Bedienen und Beobachten12, 19, 26	Hilfe20
Bedienung61	Hinweise205
Beenden13	HMI184, 185
Bus-Fehler33	I
Bus-Scan mit allen Baudraten durchführen10,	Importieren13
34	K
D	Kommunikation198
Datei13	Konfiguration automatisch einlesen200
Detailliert46, 47	Kopieren15
Drucken13	Kopieren von Anweisungen70
Durchläufe10, 34	L
E	Löschen15
Eigenschaftenfenster66	Löschen von Anweisungen70
Einfügen15	M
Einfügen von Anweisungen70	Makro 9, 66, 203
Einführung9	Makro Öffnen 69
Einstellungen 19, 52, 198, 201	Makro Speichern70
Endadresse10, 34	a opololioi i

Makro Speichern unter	70	Parametervergleich	42
Makro-Editor	203	Parametrieren	16, 83
Makrogenerator	198	PLC	78, 204
Makro-Generator9, 6	66, 203	ABS	136
Master (USS Anfrage)	74	ACOS	141
Menü	.13, 15	ADD	137
Messfunktion	61	ADD(137
N		AND	144
Nach oben verschieben	15	AND(144
Nach unten verschieben	15	ANDN	144
Nachrichten	18	ANDN(144
Nächste Anweisung ausführen	73	Anweisungsliste (AWL / IL)	171
Name		Arithmetische Operatoren	136
Neu	13	ASIN	141
Neues Makro anlegen	69	ATAN	141
NORD CON	9	Aufruf von Funktionsblöcken in ST	175
0		Auswertung von Ausdrücken	175
Oberfläche	198	Beobachtungspunkte	86
Oberflächen und Sichten		Bit Operatoren	144
Öffnen		Bitweiser Zugriff auf Variablen	174
Oszilloskop 60, 61,		BOOL_TO_BYTE	179
Oszilloskop Anzeige		Bus Soll- und Istwerte	163
Oszilloskop Drucken		BYTE_TO_BOOL	180
Oszilloskop Export		BYTE_TO_INT	180
Oszilloskop Laden		CANopen Kommunikation	82
Oszilloskop Messungen		CASE	176
Oszilloskop Speichern		ControlBox	81
Oszilloskop Übersicht		ControlBox und ParameterBox	165
P		COS	141
	00.004	CTD	111
Parameter 39, 40, 41, 19		CTU	112
Parameter download		CTUD	113
Parameter Offline		Datentypen	171
Parameter sichern		Datentypen in ST	174
Parameter Upload vom Gerät		Datenverarbeitung über Akku	80
Parameter wiederherstellen		Debugging	86
Parameter\:Auto-Lesen	•	DINT_TO_INT	181
Parameter\:bearbeiten	·	DIV	137
Parametersätze verwalten		DIV(137
Parametertransfer von Gerät	•	Editor	83
Parametertransfer zum Gerät	. 10, 83	Ein- und Ausgänge	155

EQ 152 LDN 151 Erweiterte mathematische Operatoren 141 LE 153 Exit 178 LIMIT 138 EXP 142 Literale 171 F_TRIG 115 LN 142 FB_ FunctionCurve 131 LOG 143 FB_ PIDT1 132 LT 153 FB_ ResetPostion 134 MAX 138 FB_ Capture 128 MC_ MoveAbsolute 102 FB_DinCounter 130 MC_ WriteParameter_16 110 FB_DINTToPBOX 123 MC_ WriteParameter_32 110 FB_FlyingSaw 95 MC_Control 99 FB_Gearing 97 MC_Control_MS 100 FB_NAMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveAdditive 104 FB_REadTrace
EQ
EQ 152 LDN 151 Erweiterte mathematische Operatoren 141 LE 153 Exit 178 LIMIT 138 EXP 142 Literale 171 F_TRIG 115 LN 142 FB_ FunctionCurve 131 LOG 143 FB_ PIDT1 132 LT 153 FB_ ResetPostion 134 MAX 138 FB_Capture 128 MC_ MoveAbsolute 102 FB_DINTounter 130 MC_ WriteParameter_16 110 FB_DINTTOPBOX 123 MC_ WriteParameter_32 110 FB_FlyingSaw 95 MC_ Control 99 FB_Gearing 97 MC_ Control_MS 100 FB_NMT 88 MC_ Home 101 FB_PDOConfig 89 MC_ Home 101 FB_PDOCecive 91 MC_ MoveAdditive 103 FB_PDOSend 93 MC_ MoveAdditive 103 FB_STRINGTOPBOX <td< td=""></td<>
Erweiterte mathematische Operatoren 141 Exit
Exit 178 LIMIT 138 EXP 142 Literale 171 F_TRIG 115 LN 142 FB_ FunctionCurve 131 LOG 143 FB_ PIDT1 132 LT 153 FB_ ResetPostion 134 MAX 138 FB_ Capture 128 MC_ MoveAbsolute 102 FB_DINCOUNTER 130 MC_ WriteParameter_16 110 FB_DINTTOPBOX 123 MC_ WriteParameter_32 110 FB_FlyingSaw 95 MC_Control 99 FB_Gearing 97 MC_Control_MS 100 FB_NMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_PReadTrace 120 MC_Power 106 FB_STRINGTOPBOX 126 MC_ReadActualPos 107 FB_Weigh
EXP 142 Literale 171 F_TRIG 115 LN 142 FB_ FunctionCurve 131 LOG 143 FB_ PIDT1 132 LT 153 FB_ ResetPostion 134 MAX 138 FB_ Capture 128 MC_ MoveAbsolute 102 FB_DINCOUNTER 130 MC_ WriteParameter_16 110 FB_DINTTOPBOX 123 MC_ WriteParameter_32 110 FB_FlyingSaw 95 MC_Control 99 FB_Gearing 97 MC_Control_MS 100 FB_NMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_ReadTrace 120 MC_Power 106 FB_STRINGTOPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_W
F_TRIG 115 LN 142 FB_ FunctionCurve 131 LOG 143 FB_ PIDT1 132 LT 153 FB_ ResetPostion 134 MAX 138 FB_Capture 128 MC_ MoveAbsolute 102 FB_DinCounter 130 MC_ WriteParameter_16 110 FB_DINTTOPBOX 123 MC_ WriteParameter_32 110 FB_FlyingSaw .95 MC_ Control .99 FB_Gearing .97 MC_ Control_MS 100 FB_NMT .88 MC_ Home 101 FB_PDOConfig .89 MC_ MoveAdditive 103 FB_PDOReceive .91 MC_ MoveRelative 104 FB_PDOSend .93 MC_ MoveVelocity 104 FB_ReadTrace .120 MC_ Power 106 FB_STRINGTOPBOX .126 MC_ ReadActualPos 107 FB_Weigh .135 MC_ ReadParameter 107 FB_Weigh .135 MC_ ReadStatus 108 <
FB_ FunctionCurve 131 LOG 143 FB_ PIDT1 132 LT 153 FB_ ResetPostion 134 MAX 138 FB_ Capture 128 MC_ MoveAbsolute 102 FB_ DinCounter 130 MC_ WriteParameter_16 110 FB_ DINTTOPBOX 123 MC_ WriteParameter_32 110 FB_ FlyingSaw .95 MC_ Control .99 FB_ Gearing .97 MC_ Control_MS .100 FB_ NMT .88 MC_ Home .101 FB_ PDOConfig .89 MC_ MoveAdditive 103 FB_ PDOReceive .91 MC_ MoveRelative 104 FB_ PDOSend .93 MC_ MoveVelocity .104 FB_ ReadTrace .120 MC_ Power .106 FB_ STRINGTOPBOX .126 MC_ ReadActualPos .107 FB_ Weigh .135 MC_ ReadParameter .107 FB_ WriteTrace .121 MC_ ReadParameter .107 FB_ WriteTrace .121 <
FB_ PIDT1 132 LT 153 FB_ ResetPostion 134 MAX 138 FB_ Capture 128 MC_ MoveAbsolute 102 FB_ DinCounter 130 MC_ WriteParameter_16 110 FB_ DINTTOPBOX 123 MC_ WriteParameter_32 110 FB_ FlyingSaw 95 MC_ Control 99 FB_ Gearing 97 MC_ Control_MS 100 FB_ NMT 88 MC_ Home 101 FB_ PDOConfig 89 MC_ MoveAdditive 103 FB_ PDOReceive 91 MC_ MoveRelative 104 FB_ PDOSend 93 MC_ MoveVelocity 104 FB_ ReadTrace 120 MC_ Power 106 FB_ STRINGTOPBOX 126 MC_ ReadActualPos 107 FB_ Weigh 135 MC_ ReadParameter 107 FB_ WriteTrace 121 MC_ ReadStatus 108 Fehler 169 MC_ ReadStatus 108 FOR- Schleife 177 MC_ Stop
FB_ ResetPostion .134 MAX 138 FB_ Capture .128 MC_ MoveAbsolute .102 FB_ DinCounter .130 MC_ WriteParameter_16 .110 FB_ DINTTOPBOX .123 MC_ WriteParameter_32 .110 FB_ FlyingSaw .95 MC_ Control .99 FB_ Gearing .97 MC_ Control_MS .100 FB_ NMT .88 MC_ Home .101 FB_ PDOConfig .89 MC_ MoveAdditive .103 FB_ PDOReceive .91 MC_ MoveRelative .104 FB_ PDOSend .93 MC_ MoveVelocity .104 FB_ PDOSend .93 MC_ MoveVelocity .104 FB_ ReadTrace .120 MC_ Power .106 FB_ STRINGTOPBOX .126 MC_ ReadActualPos .107 FB_ Weigh .135 MC_ ReadParameter .107 FB_ WriteTrace .121 MC_ ReadStatus .108 Fehler .169 MC_ ReadStatus .108 FOR- Schleife
FB_Capture 128 MC_ MoveAbsolute 102 FB_DinCounter 130 MC_ WriteParameter_16 110 FB_DINTTOPBOX 123 MC_ WriteParameter_32 110 FB_FlyingSaw 95 MC_Control 99 FB_Gearing 97 MC_Control_MS 100 FB_NMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_ReadTrace 120 MC_Power 106 FB_STRINGTOPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_DinCounter 130 MC_WriteParameter_16 110 FB_DINTToPBOX 123 MC_WriteParameter_32 110 FB_FlyingSaw 95 MC_Control 99 FB_Gearing 97 MC_Control_MS 100 FB_NMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_ReadTrace 120 MC_Power 106 FB_STRINGToPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_DINTToPBOX 123 MC_WriteParameter_32 110 FB_FlyingSaw 95 MC_Control 99 FB_Gearing 97 MC_Control_MS 100 FB_NMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_ReadTrace 120 MC_Power 106 FB_STRINGToPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_FlyingSaw 95 MC_Control 99 FB_Gearing 97 MC_Control_MS 100 FB_NMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_ReadTrace 120 MC_Power 106 FB_STRINGTOPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_Gearing. .97 MC_Control_MS .100 FB_NMT .88 MC_Home .101 FB_PDOConfig .89 MC_MoveAdditive .103 FB_PDOReceive .91 MC_MoveRelative .104 FB_PDOSend .93 MC_MoveVelocity .104 FB_ReadTrace .120 MC_Power .106 FB_STRINGToPBOX .126 MC_ReadActualPos .107 FB_Weigh .135 MC_ReadParameter .107 FB_WriteTrace .121 MC_ReadStatus .108 Fehler .169 MC_Reset .109 FOR- Schleife .177 MC_Stop .110 Funktionsaufrufe .173 Meldungsfenster .85 Funktionsblöcke .88 MIN .139
FB_NMT 88 MC_Home 101 FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_ReadTrace 120 MC_Power 106 FB_STRINGTOPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_PDOConfig 89 MC_MoveAdditive 103 FB_PDOReceive 91 MC_MoveRelative 104 FB_PDOSend 93 MC_MoveVelocity 104 FB_ReadTrace 120 MC_Power 106 FB_STRINGToPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_PDOReceive .91 MC_MoveRelative .104 FB_PDOSend .93 MC_MoveVelocity .104 FB_ReadTrace .120 MC_Power .106 FB_STRINGToPBOX .126 MC_ReadActualPos .107 FB_Weigh .135 MC_ReadParameter .107 FB_WriteTrace .121 MC_ReadStatus .108 Fehler .169 MC_Reset .109 FOR- Schleife .177 MC_Stop .110 Funktionsaufrufe .173 Meldungsfenster .85 Funktionsblöcke .88 MIN .139
FB_PDOSend .93 MC_MoveVelocity 104 FB_ReadTrace .120 MC_Power .106 FB_STRINGToPBOX .126 MC_ReadActualPos .107 FB_Weigh .135 MC_ReadParameter .107 FB_WriteTrace .121 MC_ReadStatus .108 Fehler .169 MC_Reset .109 FOR- Schleife .177 MC_Stop .110 Funktionsaufrufe .173 Meldungsfenster .85 Funktionsblöcke .88 MIN .139
FB_ReadTrace 120 MC_Power 106 FB_STRINGToPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_STRINGToPBOX 126 MC_ReadActualPos 107 FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_Weigh 135 MC_ReadParameter 107 FB_WriteTrace 121 MC_ReadStatus 108 Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FB_WriteTrace .121 MC_ReadStatus .108 Fehler .169 MC_Reset .109 FOR- Schleife .177 MC_Stop .110 Funktionsaufrufe .173 Meldungsfenster .85 Funktionsblöcke .88 MIN .139
Fehler 169 MC_Reset 109 FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
FOR- Schleife 177 MC_Stop 110 Funktionsaufrufe 173 Meldungsfenster 85 Funktionsblöcke 88 MIN 139
Funktionsaufrufe
Funktionsblöcke
IVIII
Funktionsumfang81 MOD
GE
GT
Haltepunkte86 MUL139
IF176 MUL(
Infoparameter166 MUX140
INT_TO_BYTE181 NE154
INT_TO_DINT181 NOT145
JMP
JMPC179 OR
JMPCN179 OR(145
Kommentare

ORN(14	6 Variablen und FB Deklaration
Parameter17	0 Vergleichs Operatoren151
ParameterBox8	1 Visualisierung81
Programm Task8	0 Visualisierung ParameterBox122
Programm zum Gerät übertragen8	5 Watch- & Breakpoint Anzeigefenster 85
Prozessabbild79	9 WHILE- Schleife178
Prozessregler8	2 XOR149
Prozesswerte15	4 XOR(149
R14	8 XORN149
R_TRIG11	5 XORN(149
REPEAT- Schleife17	7 Zuweisungsoperator174
Return17	6 Port33
ROL14	7 Projekt11, 12, 18, 19, 23, 201
ROR14	7 Projektdatei201
RS Flip Flop110	6 Projektfenster11, 12, 19, 23
S14	8 Protokollfenster69
SHL14	8 R
SHR14	8 Rückgängig15
SIN14	
Soll- und Istwerte16	0
Sollwert Verarbeitung8	Scheduler
Speicher79	Schnellstartleiste
Spezifikation7	Sichern und Wiederherstellen 184, 186
Sprachen17	So aktualisieren Sie die Firmware
Sprünge17	Speichern
Sprungmarke17	Speichern unter
SQRT14	Sprache
SR Flip Flop110	Standard
ST15	Start
Standard Funktionsblöcke11	Startadresse
STN15	Start-Baudrate
Störmeldungen18	Steuern
Strukturierter Text (ST)174	Steuerung
SUB14	Steuerungskonfiguration auswerten 200
SUB(14	Suchen und Ersetzen70
TAN14	Symbolleisten18 1
TOF11	T
TON11	Tologramm Foblor
TP11	Toolbar 11 12 20 22
Typkonvertierung179	11
Überblick Visualisierung12	
<u> </u>	

Stichwortverzeichnis

Übersicht9, 45	Verbinden16, 83
Umbenennen16, 83	Vergleichsreport42
Unternehmensgeschichte212	Verzeichnisse198, 202
USS Anfrage74, 75	w
USS Antwort74, 76	Werkezugleiste22
V	Werkzeugleiste11, 12, 20, 22
Variablenfenster	

Headquarters:

Getriebebau NORD GmbH & Co. KG

Getriebebau-Nord-Straße 1 22941 Bargteheide, Germany Fon +49 (0) 4532 / 289-0 Fax +49 (0) 4532 / 289-2253 info@nord.com, www.nord.com

Member of the NORD DRIVESYSTEMS Group

